Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 672-678.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.017
• Field Application • Previous Articles Next Articles
TANG Ruijia(), CHEN Longlong, XIE Xuqiang, ZHAO Cong, WANG Beilei, JIANG Shaojing
Received:
2024-07-05
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
TANG Ruijia,CHEN Longlong,XIE Xuqiang, et al. Effectiveness evaluation and field application of CO2-viscoelastic fluid synergistic flooding in low-permeability tight reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 672-678.
Table 2
Oil displacement performance of low-permeability tight long cores under different displacement methods"
编号 | 孔隙度/% | 气测渗透率/10-3μ | 原始含水饱和度/% | 驱替方式 | 水驱采出程度/% | 最终采出程度/% | 采收率提高幅度/% |
---|---|---|---|---|---|---|---|
1 | 7.947 | 0.283 | 41.44 | 连续CO2驱 | 38.56 | 59.21 | 20.65 |
2 | 8.279 | 0.264 | 43.25 | 0.3 PV CMS-水驱 | 40.28 | 48.62 | 8.34 |
3 | 8.146 | 0.277 | 42.73 | 0.3 PV CMS- CO2驱 | 41.54 | 70.32 | 28.78 |
Table 3
Oil displacement performance of low-permeability tight heterogeneous cores under different displacement methods"
编号 | 驱替方式 | 并联岩心 | 气测渗透率/10-3μ | 原始含水饱和度/% | 水驱后采出程度/% | 提高幅度% | ||
---|---|---|---|---|---|---|---|---|
单管 | 综合 | 单管 | 综合 | |||||
1 | CO2驱 | 高渗 | 7.812 | 35.23 | 66.86 | 39.55 | 1.16 | 0.83 |
低渗 | 0.189 | 31.45 | 17.06 | 0.56 | ||||
2 | CMS-水交替驱 | 高渗 | 8.135 | 33.88 | 56.48 | 40.11 | 13.88 | 16.89 |
低渗 | 0.214 | 31.09 | 17.70 | 20.99 | ||||
3 | CMS-CO2交替驱 | 高渗 | 7.745 | 37.63 | 46.06 | 39.46 | 6.36 | 26.28 |
低渗 | 0.172 | 31.23 | 31.99 | 31.18 |
[1] | 袁士义, 王强, 李军诗, 等. 注气提高采收率技术进展及前景展望[J]. 石油学报, 2020, 41(12): 1623-1632. |
YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623-1632. | |
[2] | 黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864. |
HUANG Xing, NI Jun, LI Xiang, et al. Characteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 853-864. | |
[3] | 王香增, 杨红, 王伟, 等. 低渗透致密油藏CO2驱油与封存技术及实践[J]. 油气地质与采收率, 2023, 30(2): 27-35. |
WANG Xiangzeng, YANG Hong, WANG Wei, et al. Technology and practice of CO2 flooding and storage in low-permeability tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 27-35. | |
[4] | 王维波, 余华贵, 杨红, 等. 低渗透裂缝性油藏CO2驱两级封窜驱油效果研究[J]. 油田化学, 2017, 34(1): 69-73. |
WANG Weibo, YU Huagui, YANG Hong, et al. Effect of two-stage sealing gas channeling and flooding in low permeability fracture reservoirs during CO2 flooding[J]. Oilfield Chemistry, 2017, 34(1): 69-73. | |
[5] | 汤瑞佳, 陈龙龙, 江绍静, 等. 低渗透油藏强化CO2/水交替注入驱油效果实验研究[J]. 非常规油气, 2024, 11(4): 70-78. |
TANG Ruijia, CHEN Longlong, JIANG Shaojing, et al. Experimental study on the effect of enhanced CO2/water alternate flooding in low permeability reservoir[J]. Unconventional Oil & Gas, 2024, 11(4): 70-78. | |
[6] | 张利军, 谭先红, 焦钰嘉, 等. 海上低渗油藏CO2微泡沫驱提高采收率实验与数值模拟研究[J]. 中国海上油气, 2023, 35(5): 145-153. |
ZHANG Lijun, TAN Xianhong, JIAO Yujia, et al. Experimental study and numerical simulation on enhanced oil recovery by CO2 microfoam flooding in offshore low-permeability reservoirs[J]. China Offshore Oil and Gas, 2023, 35(5): 145-153. | |
[7] | 鲍云波. CO2气窜主控因素研究[J]. 科学技术与工程, 2013, 13(9): 2348-2351. |
BAO Yunbo. The research on main controlling factors of CO2 gas channeling[J]. Science Technology and Engineering, 2013, 13(9): 2348-2351. | |
[8] | 李宛珊, 王健, 任振宇, 等. 低渗透油藏二氧化碳气溶性泡沫控制气窜实验研究[J]. 特种油气藏, 2019, 26(5): 136-141. |
LI Wanshan, WANG Jian, REN Zhenyu, et al. Gas-channeling control experiment with carbon dioxide gas-soluble foam in low-permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 136-141. | |
[9] | 董江艳, 吴淑红, 邢国强. 低渗低黏油藏CO2气水交替注入主控因素分析[J]. 西安石油大学学报(自然科学版), 2019, 34(4): 43-51. |
DONG Jiangyan, WU Shuhong, XING Guoqiang. Main controlling factors of CO2 gas-water alternating injection in low permeability and low viscosity oil reservoirs[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(4): 43-51. | |
[10] | 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019, 6(1): 107-114. |
JIA Kaifeng, JI Dongchao, GAO Jindong, et al. The exisiting state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019, 6(1): 107-114 | |
[11] | 汤瑞佳, 王贺谊, 余华贵, 等. 水气交替注入对CO2驱油效果的影响[J]. 断块油气田, 2016, 23(3): 358-362. |
TANG Ruijia, WANG Heyi, YU Huagui, et al. Effect of water and gas alternate injection on CO2 flooding[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 358-362. | |
[12] | LI D X, ZHANG L, LIU Y M, et al. CO2-triggered gelation for mobility control and channeling blocking during CO2 flooding processes[J]. Petroleum Science, 2016, 13(2): 247-258. |
[13] | 江绍静, 王维波, 黄春霞, 等. 改性淀粉凝胶体系控制二氧化碳窜逸技术研究[J]. 特种油气藏, 2016, 23(4): 136-139. |
JIANG Shaojing, WANG Weibo, HUANG Chunxia, et al. Application of modified starch gel system to prevent CO2 breakthrough[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 136-139 | |
[14] | 赵梓平. 驱油用两性离子型双子表面活性剂的合成及应用[J]. 断块油气田, 2019, 26(1): 119-122. |
ZHAO Ziping. Synthesis and application of zwitterionic gemini surfactant flooding agent[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 119-122. | |
[15] | 石端胜,王宏申,华科良,等. 渤海某油田驱油用超低界面张力表面活性剂研究[J]. 石油与天然气化工,2023,52(4): 83-88. |
SHI Duansheng, WANG Hongshen, HUA Keliang, et al. Research of ultra-low interfacial tension surfactant for oil displacement in an oilfield of Bohai[J]. Chemical Engineering of Oil & Gas, 2023,52(4): 83-88. | |
[16] | 田茂章, 宋新民, 马德胜, 等. 低渗透黏弹性表面活性剂的研制和评价[J]. 应用化工, 2015, 44(5): 804-809. |
TIAN Maozhang, SONG Xinmin, MA Desheng, et al. Investigation on viscoelastic surfactant system in low permeability reservoir[J]. Applied Chemical Industry, 2015, 44(5): 804-809. | |
[17] | DA C, ELHAG A, JIAN G Q, et al. CO2/water foams stabilized with cationic or zwitterionic surfactants at temperatures up to 120 ℃ in high salinity brine[C]// Paper SPE-191479-MS presented at the SPE Annual Technical Conference and Exhibition, September 24-26, 2018. |
[18] | 王典林, 杨琼, 魏兵, 等. 甜菜碱型表面活性剂结构对CO2泡沫液膜性质的影响[J]. 油气藏评价与开发, 2023, 13(3): 313-321. |
WANG Dianlin, YANG Qiong, WEI Bing, et al. Effect of betaine surfactant structure on the properties of CO2 foam film[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 313-321. | |
[19] | 唐建东, 王智林, 葛政俊. 苏北盆地江苏油田CO2驱油技术进展及应用[J]. 油气藏评价与开发, 2024, 14(1): 18-25. |
TANG Jiandong, WANG Zhilin, GE Zhengjun. CO2 flooding technology and its application in Jiangsu Oilfield in Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 18-25. | |
[20] | 董沅武, 王睿, 王思瑶, 等. 特低渗砂岩油藏CO2-低界面张力黏弹流体协同驱油机理研究[J]. 石油与天然气化工, 2022, 51(6): 77-83. |
DONG Yuanwu, WANG Rui, WANG Siyao, et al. Study on synergistic oil displacement mechanism of CO2-low interfacial tension viscoelastic fluid alternating flooding in ultra-low permeability sandstone reservoir[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 77-83. | |
[21] | LI K X, JING X Q, HE S, et al. Laboratory study displacement efficiency of viscoelastic surfactant solution in enhanced oil recovery[J]. Energy & Fuels, 2016, 30(6): 4467-4474. |
[22] | 范成成. 阴离子表面活性剂与无机盐相互作用的理论研究[D]. 东营: 中国石油大学(华东), 2014. |
FAN Chengcheng. Theoretical studies on the interaction between anionic surfactants and inorganic salts[D]. Dongying: China University of Petroleum (Huadong), 2014. | |
[23] | 冯树云, 唐善法, 胡睿智, 等. 无机盐对阴离子Gemini表面活性剂溶液流变性的影响及机理[J]. 油田化学, 2021, 38(2): 310-316. |
FENG Shuyun, TANG Shanfa, HU Ruizhi, et al. Effect of inorganic salts on rheological properties of anionic gemini surfactant solution and its mechanism[J]. Oilfield Chemistry, 2021, 38(2): 310-316. | |
[24] | 陈龙龙. 致密砂岩油藏CO2-黏弹性流体协同驱油机理研究[D]. 北京: 中国石油大学(北京), 2022. |
CHEN Longlong. Study of CO2-viscoelastic fluid synergistic oil drive mechanism in tight sandstone reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022. |
[1] | ZHANG Chao, ZHU Pengyu, HUANG Tianjing, YAN Changhao, LIU Jie, WANG Bo, ZHANG Bin, ZHANG Yi. Study on the influence of CO2-water-rock reactions under reservoir conditions on geochemical properties of sandstone reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 545-553. |
[2] | HE Yang, WANG Zhouhua, ZHENG Zuhao, TU Hanmin, HE Youcai. Experimental study on microscopic operation characteristics of CO2 miscible flooding in offshore L low permeability reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 589-596. |
[3] | WANG Yanwei, LIN Lifei, WANG Hengli. Dynamic prediction of whole CO2 flooding development process in low permeability reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 664-671. |
[4] | HU Junjie, LU Cong, GUO Jianchun, ZENG Bo, GUO Xingwu, MA Li, SUN Yuduo. Research and application of fiber fracturing and fiber temporary plugging technology for deep shale gas [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 515-521. |
[5] | ZHU Haonan, CAO Cheng, ZHANG Liehui, ZHAO Yulong, PENG Xian, ZHAO Zihan, CHEN Xingyu. Mechanism and development direction of CO2-EGR [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 975-980. |
[6] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[7] | LI Jianshan, GAO Hao, YAN Changhao, WANG Shitou, WANG Liangliang. Molecular dynamics simulation on interaction mechanisms of crude oil and CO2 [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 26-34. |
[8] | SHI Yan, XIE Junhui, GUO Xiaoting, WU Tong, CHEN Dequan, SUN Lin, DU Daijun. Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 76-82. |
[9] | ZHANG Zhisheng, WU Xiangyang, WU Qian, WANG Jixing, LIN Hanchi, GUO Junhong, WANG Rui, LI Jinhua, LIN Qianguo. Risk management system and application of CO2 flooding and sequestration leakage [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 91-101. |
[10] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[11] | JIANG Shu,LI Yuanping,DU Fengshuang,XUE Gang,ZHANG Peixian,CHEN Guohui,WANG Hu,YU Ruyang,ZHANG Ren. Recent advancement for improving gas production rate from perforated clusters in fractured shale gas reservoir [J]. Reservoir Evaluation and Development, 2023, 13(1): 9-22. |
[12] | WANG Gaofeng, LIAO Guangzhi, LI Hongbin, HU ZhiMing, WEI Ning, CONG Lianzhu. Mechanism and calculation model of EOR by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 734-740. |
[13] | CUI Chuanzhi,YAN Dawei,YAO Tongyu,WANG Jian,ZHANG Chuanbao,WU Zhongwei. Prediction method of migration law and gas channeling time of CO2 flooding front: A case study of G89-1 Block in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 741-747. |
[14] | DENG Jiasheng,WANG Ziyi,HE Wangda,PENG Dongyu,YU Bo,TANG Hongming. Experimental study on reaction of chlorite with CO2 aqueous solution [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 777-783. |
[15] | LIU Xiao,CUI Bin,WU Zhan. Cause analysis and treatment of coal-bed gas well plugging decline: A case study of southern Yanchuan CBM Field [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 626-632. |
|