Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (5): 834-843.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.013
• Oil and Gas Development • Previous Articles Next Articles
SUN Qiufen1(), QIN Jiazheng2(
), FENG Qiao1, QIAO Yu2,3, LIU Yaxin2, ZHAO Qiyang1, XU Liang1, YAN Chun1
Received:
2024-08-01
Online:
2025-09-19
Published:
2025-10-26
CLC Number:
SUN Qiufen,QIN Jiazheng,FENG Qiao, et al. A machine learning-based method for recovery rate prediction in fractured water-driven gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 834-843.
Table 2
Calculation results of recovery rates for comparative schemes"
方案 | M | k/10-3 μm2 | v/% | A | B | R/% |
---|---|---|---|---|---|---|
方案1 | 1 | 5.0 | 3 | 0.10 | 1 | 54.71 |
方案2 | 1 | 1.0 | 12 | 0.10 | 10 | 47.94 |
方案3 | 1 | 10.0 | 9 | 0.50 | 10 | 49.00 |
方案4 | 1 | 0.1 | 12 | 1.00 | 1 | 22.10 |
方案5 | 1 | 10.0 | 6 | 0.10 | 5 | 53.28 |
方案6 | 1 | 0.5 | 12 | 0.50 | 5 | 50.26 |
方案7 | 1 | 0.1 | 3 | 1.00 | 5 | 25.12 |
方案8 | 1 | 0.5 | 6 | 1.00 | 5 | 43.74 |
方案9 | 1 | 5.0 | 12 | 0.10 | 10 | 52.77 |
方案10 | 5 | 1.0 | 3 | 0.10 | 1 | 60.10 |
方案11 | 5 | 0.1 | 6 | 1.00 | 5 | 23.01 |
方案12 | 5 | 10.0 | 3 | 0.50 | 1 | 64.19 |
方案13 | 5 | 0.5 | 9 | 0.10 | 10 | 60.38 |
方案14 | 5 | 5.0 | 6 | 1.00 | 1 | 52.85 |
方案15 | 5 | 0.1 | 12 | 0.10 | 10 | 36.59 |
方案16 | 5 | 10.0 | 12 | 0.50 | 5 | 63.54 |
方案17 | 5 | 10.0 | 3 | 1.00 | 10 | 61.92 |
方案18 | 5 | 0.1 | 9 | 0.50 | 1 | 25.33 |
方案19 | 10 | 0.1 | 3 | 0.10 | 5 | 35.12 |
方案20 | 10 | 5.0 | 9 | 1.00 | 5 | 67.12 |
方案21 | 10 | 1.0 | 6 | 0.50 | 10 | 67.11 |
方案22 | 10 | 1.0 | 12 | 0.50 | 5 | 66.47 |
方案23 | 10 | 0.5 | 6 | 0.10 | 1 | 56.43 |
方案24 | 10 | 10.0 | 9 | 1.00 | 1 | 66.84 |
方案25 | 10 | 5.0 | 9 | 1.00 | 10 | 67.05 |
… | … | … | … | … | … | |
方案122 | 20 | 0.5 | 9 | 0.10 | 10 | 61.07 |
方案123 | 20 | 1.0 | 12 | 0.50 | 5 | 61.65 |
方案124 | 20 | 5.0 | 3 | 0.10 | 1 | 61.67 |
方案125 | 20 | 0.5 | 3 | 0.50 | 5 | 57.33 |
[1] | 国家能源局. 天然气可采储量计算方法: [S]. 北京: 石油工业出版社, 2022. |
National Energy Bureau of the People’s Republic of China. Natural gas recoverable reserves calculation method: [S]. Beijing: Petroleum Industry Press, 2022. | |
[2] |
尹涛, 杨屹铭, 靳锁宝, 等. 概率法在岩性气藏储量风险评估中的应用[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 60-68.
doi: 10.11885/j.issn.1674-5086.2019.09.16.04 |
YIN Tao, YANG Yiming, JIN Suobao, et al. Application of probability method in the reserves risk evaluation of lithologic gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 60-68. | |
[3] | 孙贺东, 王宏宇, 朱松柏, 等. 基于幂函数形式物质平衡方法的高压、超高压气藏储量评价[J]. 天然气工业, 2019, 39(3): 56-64. |
SUN Hedong, WANG Hongyu, ZHU Songbai, et al. Reserve evaluation of high pressure and ultra high pressure reservoirs with power function material balance method[J]. Natural Gas Industry, 2019, 39(3): 56-64. | |
[4] |
付斌, 李进步, 张晨, 等. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-149.
doi: 10.11764/j.issn.1672-1926.2019.09.005 |
FU Bin, LI Jinbu, ZHANG Chen, et al. Improvement of well pattern in development area of tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2020, 31(1): 143-149.
doi: 10.11764/j.issn.1672-1926.2019.09.005 |
|
[5] | 郑玲丽, 朱冰倩, 张宇豪, 等. 缝洞型碳酸盐岩油藏水驱特征曲线类型及适应性: 以塔河油田为例[J]. 油气藏评价与开发, 2024, 14(6): 899-907. |
ZHENG Lingli, ZHU Bingqian, ZHANG Yuhao, et al. Types and applicability of waterflooding characteristic curves in fractured-cavity carbonate reservoirs: A case study of Tahe Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 899-907. | |
[6] | 崔传智, 李怀亮, 吴忠维, 等. 考虑压驱注水诱发裂缝影响的注水井压力分析[J]. 油气藏评价与开发, 2023, 13(5): 686-694. |
CUI Chuanzhi, LI Huailiang, WU Zhongwei, et al. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. | |
[7] | 梁运培, 张怀军, 王礼春, 等. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究[J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
LIANG Yunpei, ZHANG Huaijun, WANG Lichun, et al. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. | |
[8] | 陈祥, 王冠, 刘平礼, 等. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究[J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
CHEN Xiang, WANG Guan, LIU Pingli, et al. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. | |
[9] | SIDLE R E, LEE W J. An update on the use of reservoir analogs for the estimation of oil and gas reserves[C]// SPE Hydrocarbon Economics and Evaluation Symposium. SPE, 2010: 1-9. |
[10] | 谭晓华, 彭港珍, 李晓平, 等. 考虑水封气影响的有水气藏物质平衡法及非均匀水侵模式划分[J]. 天然气工业, 2021, 41(3): 97-103. |
TAN Xiaohua, PENG Gangzhen, LI Xiaoping, et al. Material balance method and classification of non-uniform water invasion mode for gas reservoirs with water considering the effect of water sealed gas[J]. Natural Gas Industry, 2021, 41(3): 97-103. | |
[11] |
吕志凯, 唐海发, 刘群明, 等. 塔里木盆地库车坳陷超深层裂缝性致密气藏水封气动态评价方法[J]. 天然气地球科学, 2022, 33(11): 1874-1882.
doi: 10.11764/j.issn.1672-1926.2022.07.007 |
Zhikai LYU, TANG Haifa, LIU Qunming, et al. Dynamic evaluation method of water sealed gas for ultra-deep fractured tight gas reservoir in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11): 1874-1882.
doi: 10.11764/j.issn.1672-1926.2022.07.007 |
|
[12] |
王国锋, 周梦飞, 胡勇, 等. 裂缝—孔隙型边底水气藏提高采收率大型物理模拟实验[J]. 天然气地球科学, 2024, 35(1): 96-103.
doi: 10.11764/j.issn.1672-1926.2023.07.009 |
WANG Guofeng, ZHOU Mengfei, HU Yong, et al. Large-scale physical simulation experiment for enhanced gas recovery in fractured-porous water-drive gas reservoirs[J]. Natural Gas Geoscience, 2024, 35(1): 96-103.
doi: 10.11764/j.issn.1672-1926.2023.07.009 |
|
[13] | 刘念肖, 雷登生, 黄小亮, 等. 考虑水封气的水驱气藏开发因素数值模拟研究[J]. 重庆科技学院学报(自然科学版), 2022, 24(2): 31-36. |
LIU Nianxiao, LEI Dengsheng, HUANG Xiaoliang, et al. Numerical simulation research on development factors of water drive gas reservoir considering water-sealed gas[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2022, 24(2): 31-36. | |
[14] | 胡景涛, 王本成, 王勇飞, 等. 基于试井分析方法的元坝气田水侵早期识别[J]. 非常规油气, 2023, 10(3): 89-97. |
HU Jingtao, WANG Bencheng, WANG Yongfei, et al. Early identification of water invasion in Yuanba Gas Field based on well test analysis method[J]. Unconventional Oil & Gas, 2023, 10(3): 89-97. | |
[15] | 李兴娟, 姜应兵, 丁立明. 塔河油田AD4单元流场变化及水侵规律认识[J]. 非常规油气, 2022, 9(5): 123-128. |
LI Xingjuan, JIANG Yingbing, DING Liming. Understanding of flow distribution and water intrusion rule in AD4 well area of Tahe Olifield[J]. Unconventional Oil & Gas, 2022, 9(5): 123-128. | |
[16] | 侯亚伟, 刘超, 徐中波, 等. 多层水驱开发油田采收率快速预测方法[J]. 石油钻探技术, 2022, 50(5): 82-87. |
HOU Yawei, LIU Chao, XU Zhongbo, et al. A method for rapidly predicting recovery of multi-layer oilfields developed by water-flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. | |
[17] | 盖建. 基于自动机器学习的采油井压裂效果预测方法[J]. 油气地质与采收率, 2023, 30(1): 161-170. |
GAI Jian. Prediction method for hydraulic fracturing effect of oil production well based on automatic machine learning technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 161-170. | |
[18] | 尚福华, 郑伟. 基于决策树的注采连通关系判别研究[J]. 计算机应用研究, 2013, 30(7): 2051-2054. |
SHANG Fuhua, ZHENG Wei. Study on inferring interwell connectivity of injection-production system based on decision tree[J]. Application Research of Computers, 2013, 30(7): 2051-2054. | |
[19] | 张世昆, 陈作. 人工智能在压裂技术中的应用现状及前景展望[J]. 石油钻探技术, 2023, 51(1): 69-77. |
ZHANG Shikun, CHEN Zuo. Status and prospect of artificial intelligence application in fracturing technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69-77. | |
[20] | 徐帅. 致密油藏注水吞吐数值模拟及开发制度优化[D]. 北京: 中国石油大学(北京), 2022. |
XU Shuai. Numerical simulation and development system optimization of water injection huff and puff in tight oil reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
[21] | 窦凯文. 致密油水平井体积压裂参数优化研究[D]. 东营: 中国石油大学(华东), 2018 |
DOU Kaiwen. Optimization of volumetric-fracturing parameters for horizontal wells in tight oil reservoirs[D]. Dongying: China University of Petroleum (East China), 2018. | |
[22] | LEE S H, LOUGH M F, JENSEN C L. Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001, 37(3): 443-455. |
[23] | LI L, LEE S H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[J]. SPE Reservoir Evaluation &Engineering, 2008, 11(4): 750-758. |
[24] | XU Y, CAVALCANTE FILHO J S, YU W, et al. Discrete-fracture modeling of complex hydraulic-fracture geometries in reservoir simulators[J]. SPE Reservoir Evaluation & Engineering, 2017, 20(2): 403-422. |
[25] | 王平, 沈海超. 加拿大M致密砂岩气藏高效开发技术[J]. 石油钻探技术, 2022, 50(1): 97-102. |
WANG Ping, SHEN Haichao. High-efficient development technologies for the M tight sandstone gas reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102. | |
[26] | BREIMAN L, FRIEDMAN J, OLSHEN R A, et al. Classification and regression trees[M]. Belmont California: Wadsworth, 1984. |
[1] | QI Huaiyan, YANG Guobin, ZHU Yadi, DENG Mingxin, GENG Shaoyang, TIAN Weichao. Study on imbibition mechanisms in tight oil reservoirs based on nuclear magnetic resonance and pore-scale simulation [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 824-833. |
[2] | WANG Shuoshi, JI Qiang, GUO Ping, LIU Huang, WEN Lianhui, XU Ruifeng, WANG Zhouhua, ZHANG Ruixu. Applicability of LARSEN & SKAUGE relative permeability hysteresis model in high-temperature and high-pressure CO2-water alternating injection experiments [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 613-624. |
[3] | SUN Dongsheng, ZHANG Shunkang, WANG Zhilin, GE Zhengjun, LIN Bo. Calculation method for CO2 geological storage capacity of fault-block traps in Subei Basin based on safety considerations [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 641-645. |
[4] | ZHU Suyang, PENG Zhen, DI Yunting, PENG Xiaolong, LIU Dongchen, GUAN Wenjie. Research progress on shale gas productivity evaluation: concepts, methods and future directions [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 488-499. |
[5] | CHAI Nina, LI Jiarui, ZHANG Liwen, WANG Junjie, LIU Yapeng, ZHU Lun. Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 124-130. |
[6] | ZHANG Zhang, MENG Peng, YANG Wei, ZHANG Xiaolong, HUANG Qi, WANG Haoran. Characterization of braided river reservoir architecture based on seismic attribute stacking ensemble learning: A case study of the C-2 oilfield in the Bohai Bay Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 64-72. |
[7] | GAI Changcheng, LI Hongda, REN Lu, CAO Wei, HAO Jie. Comparative analysis of geothermal and reservoir numerical simulation methods [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 849-856. |
[8] | QU Changqing, LIN Qianguo. Atmospheric diffusion study of surface leakage from CO2 enhanced oil recovery with carbon capture and storage based on flux monitoring-CFD simulation [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 885-891. |
[9] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[10] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[11] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[12] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[13] | GAI Changcheng, ZHAO Zhongxin, REN Lu, YAN Yican, HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
[14] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[15] | MA Daixin, REN Xianjun, ZHAO Mifu, HAN Jiaoyan, LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
|