Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (5): 881-890.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.017
• Engineering Techniques • Previous Articles Next Articles
HUANG Yaoqi1(), ZHAO Zhongmin2
Received:
2024-07-24
Online:
2025-09-19
Published:
2025-10-26
CLC Number:
HUANG Yaoqi,ZHAO Zhongmin. Degradation of polyacrylamide-containing wastewater by ultraviolet-activated iron-carbon micro-electrolysis and potassium persulfate[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 881-890.
Table 2
Experimental results of COD removal rate under different conditions"
序号 | pH值 | 反应 时间/h | K2S2O8剂量/(mmol/L) | 紫外线 功率/W | COD 去除率/% |
---|---|---|---|---|---|
1 | 3.5 | 1.5 | 1.2 | 12 | 50.20 |
2 | 4.0 | 2.0 | 1.0 | 18 | 57.32 |
3 | 4.0 | 2.0 | 1.0 | 18 | 53.40 |
4 | 4.0 | 2.0 | 1.0 | 18 | 56.63 |
5 | 4.5 | 2.5 | 1.2 | 12 | 57.49 |
6 | 4.0 | 1.0 | 1.0 | 18 | 29.00 |
7 | 4.0 | 2.0 | 1.4 | 18 | 62.49 |
8 | 4.5 | 1.5 | 1.2 | 24 | 47.20 |
9 | 4.5 | 1.5 | 0.8 | 24 | 34.51 |
10 | 3.5 | 1.5 | 1.2 | 24 | 60.74 |
11 | 4.5 | 1.5 | 0.8 | 12 | 31.62 |
12 | 3.5 | 2.5 | 1.2 | 24 | 80.91 |
13 | 4.0 | 2.0 | 1.0 | 6 | 38.43 |
14 | 3.5 | 2.5 | 0.8 | 12 | 65.26 |
15 | 4.0 | 2.0 | 1.0 | 30 | 62.60 |
16 | 4.0 | 3.0 | 1.0 | 18 | 71.81 |
17 | 4.5 | 1.5 | 1.2 | 12 | 45.60 |
18 | 3.5 | 2.5 | 1.2 | 12 | 73.69 |
19 | 4.5 | 2.5 | 1.2 | 24 | 73.26 |
20 | 3.5 | 1.5 | 0.8 | 24 | 48.09 |
21 | 4.5 | 2.5 | 0.8 | 24 | 52.69 |
22 | 4.5 | 2.5 | 0.8 | 12 | 49.37 |
23 | 3.5 | 1.5 | 0.8 | 12 | 48.00 |
24 | 3.0 | 2.0 | 1.0 | 18 | 62.50 |
25 | 4.0 | 2.0 | 1.0 | 18 | 57.21 |
26 | 5.0 | 2.0 | 1.0 | 18 | 26.64 |
27 | 3.5 | 2.5 | 0.8 | 24 | 69.81 |
28 | 4.0 | 2.0 | 1.0 | 18 | 58.71 |
29 | 4.0 | 2.0 | 0.6 | 18 | 49.83 |
30 | 4.0 | 2.0 | 1.0 | 18 | 57.31 |
Table 3
ANOVA results of 2FI model for COD removal rate"
参数类别 | 平方和 | 自由度 | 均方值 | 方差比例值 | 概率值 | |
---|---|---|---|---|---|---|
COD去除率模型 | 4 753.47 | 10 | 475.35 | 18.24 | <0.000 1 | 重要的 |
pH值 | 1 300.66 | 1 | 1 300.66 | 49.90 | <0.000 1 | |
反应时间 | 2 442.99 | 1 | 2 442.99 | 93.72 | <0.000 1 | |
K2S2O8浓度 | 551.62 | 1 | 551.62 | 21.16 | 0.000 2 | |
紫外线功率 | 370.68 | 1 | 370.68 | 14.22 | 0.001 3 | |
pH值-反应时间 | 4.80 | 1 | 4.80 | 0.18 | 0.672 8 | |
pH值-K2S2O8浓度 | 27.51 | 1 | 27.51 | 1.06 | 0.317 2 | |
pH值-紫外线功率 | 0.087 | 1 | 0.087 | 0.003 | 0.954 5 | |
反应时间-K2S2O8浓度 | 2.81 | 1 | 2.81 | 0.11 | 0.746 4 | |
反应时间-紫外线功率 | 15.48 | 1 | 15.48 | 0.59 | 0.450 3 | |
K2S2O8剂量-紫外线功率 | 36.84 | 1 | 36.84 | 1.41 | 0.249 1 | |
残余 | 495.27 | 19 | 26.07 | |||
缺乏适应度 | 479.34 | 14 | 34.24 | 10.75 | 0.008 0 | 重要的 |
纯错误 | 15.93 | 5 | 3.19 | |||
总计 | 5 248.74 | 29 |
[1] | 张可佳, 杨玉坤, 苏庆峰, 等. 电催化法去除炼油污水中聚丙烯酰胺实验研究[J]. 辽宁化工, 2019, 48(11): 1068-1070. |
ZHANG Kejia, YANG Yukun, SU Qingfeng, et al. Experimental research on removal of polyacrylamide from refining wastewater by electrocatalytic method[J]. Liaoning Chemical Industry, 2019, 48(11): 1068-1070. | |
[2] | 李远超, 许凌露, 贺宇欣, 等. 不同聚丙烯酰胺用量对加工番茄产量及土壤环境的影响[J]. 现代农业科技, 2019, 47(21): 70-74. |
LI Yuanchao, XU Linglu, HE Yuxin, et al. Effect of different polyacrylamide amount on processed tomato yield and soil environment[J]. Modern Agricultural Science and Technology, 2019, 47(21): 70-74. | |
[3] | PAN Y C, SHE D L, SHI Z Q, et al. Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils?[J]. Environmental Science and Pollution Research, 2021, 28(6): 59974-59987. |
[4] | ALBALASMEH A A, HAMDAN E H, GHARAIBEH M A, et al. Improving aggregate stability and hydraulic properties of sandy loam soil by applying polyacrylamide polymer[J]. Soil and Tillage Research, 2021, 206: 104821. |
[5] | LI O, PRZYBILLA M, WHITLEY C B. Proteomic analysis of mucopolysaccharidosis type I mouse brain with two-dimensional polyacrylamide gel electrophoresis[J]. Molecular Genetics and Metabolism, 2017, 120(1): S104. |
[6] |
OKUDA T, TOYODA Y, MURAKAMI T, et al. Biodistribution/biostability assessment of siRNA after intravenous and intratracheal administration to mice, based on comprehensive analysis of in vivo/ex vivo/polyacrylamide gel electrophoresis fluorescence imaging[J]. International Journal of Pharmaceutics, 2019, 565: 294-305.
doi: S0378-5173(19)30369-2 pmid: 31078647 |
[7] | JO H, SIM M, SEMIN K, et al. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation[J]. Acta biomaterialia, 2016, 48: 100-109. |
[8] | CORREDOR L M, HUSEIN M M, MAINI B B. Impact of PAM-grafted nanoparticles on the performance of hydrolyzed polyacrylamide solutions for heavy oil recovery at different salinities[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9888-9899. |
[9] | AHSANI T, TAMSILIAN Y, REZAEI A. Molecular dynamic simulation and experimental study of wettability alteration by hydrolyzed polyacrylamide for enhanced oil recovery: A new finding for polymer flooding process[J]. Journal of Petroleum Science and Engineering, 2021, 196(3): 108029. |
[10] | JI Y K, WALKINSHAW C, BELSHAW G, et al. Effect of polyacrylamide friction reducer on calcite dissolution rate at 25°C and implication for hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2020, 87(2): 103770. |
[11] | MOHAN A, RAO A, VANCSO J, et al. Towards enhanced oil recovery: Effects of ionic valency and pH on the adsorption of hydrolyzed polyacrylamide at model surfaces using QCM-D[J]. Applied Surface Science, 2021, 560: 149995. |
[12] |
QIN L M, MYERS M, OTTO C, et al. Further insights into the performance of silylated polyacrylamide-based relative permeability modifiers in carbonate reservoirs and influencing factors[J]. ACS omega, 2021, 6(21): 13671-13683.
doi: 10.1021/acsomega.1c00820 pmid: 34095660 |
[13] | 刘存辉, 石昀, 韩英波, 等. 活性乳化聚丙烯酰胺驱油剂的研究[J]. 当代化工, 2020, 49(1): 113-116. |
LIU Cunhui, SHI Yun, HAN Yingbo, et al. Study on polyacrylamide for oil displacement in offshore oilfields[J]. Contemporary Chemical Industry, 2020, 49(1): 113-116. | |
[14] | WU W, MA J X, XU J, et al. Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability[J]. Chemical Engineering Journal, 2021, 410(7): 128425. |
[15] | 盛红坤, 张晨, 李国东, 等. 聚丙烯酰胺联合活性污泥对废水中铅的吸附性能研究[J]. 环境科学与管理, 2021, 46(1): 87-90. |
SHENG Hongkun, ZHANG Chen, LI Guodong, et al. Adsorption of lead in wastewater using polyacrylamide combined with activated sludge[J]. Environmental Science and Management, 2021, 46(1): 87-90. | |
[16] | 冯霞, 袁敬敬, 赵义平, 等. PVA/PAM/TM水凝胶的制备及其对染料和氨氮废水的吸附性能[J]. 天津工业大学学报, 2021, 40(6): 14-21. |
FNEG Xia, YUAN Jingjing, ZHAO Yiping, et al. Preparation of PVA/PAM/TM hydrogels and their adsorption properties for dyes and ammonia-nitrogen wastewater[J]. Journal of Tiangong University, 2021, 40(6): 14-21. | |
[17] | 周青, 谭长银, 曹雪莹, 等. 聚丙烯酰胺(PAM)及有机螯合剂对土壤镉有效性的影响[J]. 湖南师范大学自然科学学报, 2021, 44(6): 46-53. |
ZHOU Qing, TAN Changyin, CAO Xueying, et al. Effects of polyacrylamide (PAM) and organic chelating agents on the cadmium availability in soil[J]. Journal of Natural Science of Hunan Normal University, 2021, 44(6): 46-53. | |
[18] | 冯齐云, 高宝玉, 岳钦艳. 不同阳离子聚丙烯酰胺有机脱水剂对污泥脱水性能的影响[J]. 环境科学, 2022, 43(2): 928-935. |
FENG Qiyun, GAO Baoyu, YUE Qinyan, et al. Effect of different cationic polyacrylamide organic dehydrating agents on sludge dewatering performance[J]. Environmental Science, 2022, 43(2): 928-935. | |
[19] | RELLEGADLA S, PRAJAPAT G, AGRAWAL A. Polymers for enhanced oil recovery: Fundamentals and selection criteria[J]. Applied Microbiology & Biotechnology, 2017, 101(15): 1-16. |
[20] | GAO C H, SHI J, ZHAO F J. Successful polymer flooding and surfactant-polymer flooding projects at Shengli oilfield from 1992 to 2012[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(1): 1-8. |
[21] | 宫琦. 聚丙烯酰胺类油田化学剂生物毒性研究[D]. 北京: 中国石油大学(北京), 2020. |
GONG Qi. Study of biotoxicity of acrylamide polymer as chemical agent used in the oil field[D]. Beijing: China University of Petroleum(Beijing), 2020. | |
[22] | 荣俊锋, 李龙洋, 巴鹏辉, 等. Fenton氧化协同活性炭吸附净化油田聚合物驱含PAM污水研究[J]. 应用化工, 2020, 49(4): 940-944. |
RONG Junfeng, LI Longyang, BA Penghui, et al. Study on purification of polymer flooding wastewater containing PAM in oil field by Fenton oxidation and activated carbon adsorption[J]. Applied Chemical Industry, 2020, 49(4): 940-944. | |
[23] | LIU Z M, GAO Z M, LU X G. Advanced treatment of pharmaceutical wastewater with a combined Fe-C microelectrolysis/EGSB system assisted by microalgae[J]. Separation Science and Technology, 2020, 56(16): 1-12. |
[24] | XUE X F. Application research of internal electrolysis as pre-treatment for berberine wastewater biodegradation[J]. Journal of Physics: Conference Series, 2021, 2009: 10-14, |
[25] | LI X, JIA Y, QIN Y, et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms[J]. Chemosphere, 2021, 278: 130483. |
[26] | YANG Z M, MA Y P, LIU Y, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C microelectrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. |
[27] | 王俊钧. 催化零价铁处理吉林化纤厂腈纶废水[D]. 北京: 北京化工大学, 2010. |
WANG Junjun. Treatment on acrylic wastewater in Jilin chemical fiber factory by zero-valent iron[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
[28] | IKE I, LINDEN K, ORBELL J D, et al. Critical review of the science and sustainability of persulphate advanced oxidation processes[J]. Chemical Engineering Journal, 2018, 338: 651-669. |
[29] | HE Q F, SI S H, SONG L S, et al. Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis[J]. Saudi Journal of Biological Sciences, 2017, 26(4): 849-853. |
[30] | MANI P, KIM Y, LAKHERA S, et al. Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon[J]. Chemosphere, 2021, 277: 130225. |
[31] | LUTZE H, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72(1): 349-360. |
[32] | HUANG Y, YU X B, GAN H H, et al. Degradation and chlorination mechanism of fumaric acid based on SO4 -: An experimental and theoretical study[J]. Environmental Science and Pollution Research, 2021, 28(3): 1-10. |
[33] | 王士顺. UV/NO3-体系降解有机染料效能及机理研究[D]. 济南: 山东建筑大学, 2021. |
WANG Shishun. Study on degradation efficiency and mechanism of organic dyes by UV /NO3 -system[D]. Jinan: Shandong Jianzhu University, 2021. | |
[34] | ZHAN L M, LI W T, LIU L, et al. Degradation of micropollutants in flow-through VUV/UV/H2O2 reactors: Effects of H2O2 dosage and reactor internal diameter[J]. Journal of Environmental Sciences, 2021, 110(12): 28-37. |
[35] | LUTZE H, BAKKOUR R, KERLIN N, et al. Formation of bromate in sulfate radical based oxidation: Mechanistic aspects and suppression by dissolved organic matter[J]. Water Research, 2014, 53(4): 370-377. |
[36] |
HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science and Technology, 2005, 39(7): 2383-2388.
pmid: 15871280 |
[37] | 中华人民共和国生态环境部. 水质化学需氧量的测定重铬酸盐法: [S/OL]. 北京: 中国标准出版社, 2017. |
Ministry of Ecology and Environment of the People's Republic of China. Water quality-Determination of the chemical oxygen demand-Di chromate method: [S/OL]. Beijing: China Standard Publishing House, 2017. | |
[38] | WANG S N, YANG Q, CHEN F, et al. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review[J]. Chemical Engineering Journal, 2017, 328: 927-942. |
[39] | KASIRI M B, ALEBOYEH H, SALARY A. Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks[J]. Environmental Science & Technology, 2008, 42(21): 7970-7975. |
[40] | AZIMI S C, SHIRINI F, PENDASHTEH A. Preparation and application of α-Fe2O3@TiO2@SO3H for photocatalytic degradation and COD reduction of woodchips industry wastewater[J]. Environmental Science and Pollution Research, 2021, 28(2): 1-24. |
[41] | YANG L, XUE J M, HE L Y, et al. Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective[J]. Chemical Engineering Journal, 2019, 378: 122146. |
[1] | ZHAO Yong, LI Jiudi, YAN Shumei, LI Jiwei, TIAN Bin, PAN Lu, XU Chen, CHEN Lei, LEI Lei, LYU Peng. Oil and gas development technologies and research directions in Xihu Sag of East China Sea Shelf Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 711-721. |
[2] | LI Jiudi, TIAN Bin, LI Jiwei, WANG Jianwei, ZHAO Tianpei, DING Li. Practices and insights of low-permeability gas reservoir development in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 734-739. |
[3] | CHEN Hongju, LIU Qiang, SUN Lili, YU Hang. Status and prospects of low carbon development in offshore oil and gas industry [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 981-989. |
[4] | YANG Zuoya,WU Xiaomin. Numerical simulation study on multi-layer combined exploitation of natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 393-402. |
[5] | LI Jiudi, TIAN Bin, LI Jiwei, WANG Jianwei, ZHAO Tianpei, DING Li. Practices and insights of low-permeability gas reservoir development in East China Sea [J]. Petroleum Reservoir Evaluation and Development, , (): 2025029-. |
[6] | ZHAO Yong, LI Jiudi, YAN Shumei, LI Jiwei, TIAN Bin, PAN Lu, XU Chen, CHEN Lei, LEI Lei, LYU Peng. Oil and gas development technologies and research directions in Xihu Sag of East China Sea Shelf Basin [J]. Petroleum Reservoir Evaluation and Development, , (): 2025033-. |
|