[1] 林魂, 孙新毅, 宋西翔, 等. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473. LIN Hun, SUN Xinyi, SONG Xixiang, et al.A model for shale gas well production prediction based on improved artificial neural network[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. [2] 韩克宁, 王伟, 樊冬艳, 等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656. HAN Kening, WANG Wei, FAN Dongyan, et al.Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. [3] MAGNUSSON L V, OLSSON J R, TRAN C T T. Recurrent neural networks for oil well event prediction[J]. IEEE Intelligent Systems, 2023, 38(2): 73-80. [4] 任燕龙, 谷建伟, 崔文富, 等. 基于改进果蝇算法和长短期记忆神经网络的油田产量预测模型[J]. 科学技术与工程, 2020, 20(18): 7245-7251. REN Yanlong, GU Jianwei, CUI Wenfu, et al.Oilfield production prediction model based on improved fruit fly algorithm and long-short term memory neural network[J]. Science Technology and Engineering, 2020, 20(18): 7245-7251. [5] LU W J, MA L, CHEN H, et al.A clinical prediction model in health time series data based on long short-term memory network optimized by fruit fly optimization algorithm[J]. IEEE Access, 2020, 8: 136014-136023. [6] ABDULLAYEVA F, IMAMVERDIYEV Y.Development of oil production forecasting method based on deep learning[J]. Statistics, Optimization & Information Computing, 2019, 7(4): 826-839. [7] QIAO Y D, PENG J, GE L, et al.Application of PSO LS-SVM forecasting model in oil and gas production forecast[C]//2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing. Oxford, United Kingdom, 26-28 July, 2017. [8] 白薷, 王世玉, 张璐, 等. 基于MAE神经网络的测井曲线地层自动识别方法[J]. 天然气勘探与开发, 2024, 47(4): 63-71. BAI Ru, WANG Shiyu, ZHANG Lu, et al.An automatic identifying method for strata via logging curves based on MAE neural network[J]. Natural Gas Exploration and Development, 2024, 47(4): 63-71. [9] XUE L L, YUE T, XIONG Y F, et al.A data-driven shale gas production forecasting method based on the multi-objective random forest regression(Article)[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107801. [10] QIN X Z, HU X H, LIU H, et al.A combined gated recurrent unit and multi-layer perception neural network model for predicting shale gas production[J]. Processes, 2023, 11(3): 806. [11] 周道勇, 汪小平, 张娜, 等. 基于机器学习的气藏相对渗透率曲线确定方法[J]. 天然气勘探与开发, 2024, 47(4): 89-98. ZHOU Daoyong, WANG Xiaoping, ZHANG Na, et al.Determine relative permeability curves for gas reservoirs based on machine learning[J]. Natural Gas Exploration and Development, 2024, 47(4): 89-98. [12] 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1523. JI Deyang, JIN Feng, DONG Lei, et al.Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1523. [13] GUO C, KANG X M, XIONG J P, et al.A new time series forecasting model based on complete ensemble empirical mode decomposition with adaptive noise and temporal convolutional network[J]. Neural Processing Letters, 2023, 55(4): 4397-4417. [14] 张蕾, 窦宏恩, 王天智, 等. 基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J]. 石油勘探与开发, 2022, 49(5): 996-1004. ZHANG Lei, DOU Hongen, WANG Tianzhi, et al.A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model[J]. Petroleum Exploration and Development, 2022, 49(5): 996-1004. [15] 王炼红, 罗志辉, 林飞鹏, 等. 采用多头注意力机制的C&RM-MAKT预测算法[J]. 电子学报, 2023, 51(5): 1215-1222. WANG Lianhong, LUO Zhihui, LIN Feipeng, et al.C & RM-MAKT prediction algorithm using multi-head attention mechanism[J]. Acta Electronica Sinica, 2023, 51(5): 1215-1222. [16] YU Kun, QIN Xizhong, JIA Zhenhong, et al.Cross-attention fusion based spatial-temporal multi-graph convolutional network for traffic flow prediction[J]. Sensors, 2021, 21(24): 8468. [17] 耿韶松, 李晋国. 基于动态卷积与注意力的多特征融合行人重识别[J]. 计算机工程与设计, 2023, 44(4): 1228-1234. GENG Shaosong, LI Jinguo.Person re-identification based on multi-feature fusion of dynamic convolution and attention[J]. Computer Engineering and Design, 2023, 44(4): 1228-1234. [18] QIAN J J, LIN J, BAI D, et al.Omni-dimensional dynamic convolution meets bottleneck transformer: A novel improved high accuracy forest fire smoke detection model[J]. Forests, 2023, 14(4): 838. [19] 徐睿, 张飞, 蔡珺君, 等. 基于储层发育主控因素的碳酸盐岩储层定量分类评价: 以四川盆地安岳气田台内带灯影组四段气藏为例[J]. 天然气勘探与开发, 2024, 47(6): 62-69. XU Rui, ZHANG Fei, CAI Junjun, et al.Quantitatively classifying and evaluating carbonate reservoirs based on main controls on reservoir development: An example from Dengying 4 Member in the intra-platform zone, Anyue gasfield, Sichuan Basin[J]. Natural Gas Explora-tion and Development, 2024, 47(6): 62-69. [20] 罗炫, 张文彪, 严鸿, 等. 高含水致密凝析气藏稳产技术应用: 以四川盆地安岳气田须家河组气藏为例[J]. 天然气勘探与开发, 2024, 47(1): 83-88. LUO Xuan, ZHANG Wenbiao, YAN Hong, et al.Production-stabilizing technologies for tight condensate gas reservoirs rich in water cut: An example from Xujiahe Formation, Anyue gas-field, Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(1): 83-88. [21] 彭越, 张满郎, 李明秋, 等. 基于图像识别技术的裂缝发育程度定量评价新方法: 以安岳气田须二气藏为例[J]. 非常规油气, 2024, 11(1): 12-21. PENG Yue, ZHANG Manlang, LI Mingqiu, et al.A new method for quantitative evaluation of fracture development degree based on image recognition technology: Take the Xu2 gas reser-voir in the Anyue gas field as an example[J]. Unconventional Oil & Gas, 2024, 11(1):12-21. [22] 严鸿, 商绍芬, 张铭, 等. 安岳气田高石梯区块上震旦统灯四段气藏动态监测及认识[J]. 天然气技术与经济, 2020, 14(4): 5-11. YAN Hong, SHANG Shaofen, ZHANG Ming, et al.Performance monitoring and understandings on gas reservoirs of the Upper Sinian Dengying 4 Member, Gaoshiti block, Anyue gasfield, Sichuan Basin[J]. Natural Gas Technology and Economy, 2020, 14(4): 5-11. [23] 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al.Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 393-405. [24] WAN J S, XIA N, YIN Y T, et al.TCD former: A transformer framework for non-stationary time series forecasting based on trend and change-point detection[J]. Neural Networks, 2024, 173: 106196. |