Specialist Forum

Status and prospect of experimental technologies of geological evaluation for shale gas

  • Xuhui XU ,
  • Baojian SHEN ,
  • Zhiming LI ,
  • Wentao ZHANG ,
  • Lingjie YU ,
  • Zhongliang MA
Expand
  • 1. State Key Laboratory of Mechanism and Effective Development of Oil and Gas Enrichment in Shale, Wuxi, Jiangsu 214126, China
    2. Wuxi Institute of Petroleum Geology, Sinopec Exploration and Production Institute, Wuxi, Jiangsu 214126, China

Received date: 2019-12-11

  Online published: 2020-02-04

Abstract

The improvement of experimental technologies of geological evaluation for shale gas is the key factor for the success of shale gas exploration and development in America. The progress in experimental technologies of geological evaluation of shale gas is summarized from three aspects including gas-bearing property, occurrence and fracability of shale. It mainly focuses on the ultramicroscopic organic petrology, formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion, and the characterization of pore network, which are developed for high thermal maturity marine shale of South China in recent years. The future trends of experimental technologies of geological evaluation for shale gas are discussed. It is proposed that the effectiveness and connectivity of multiscale pore structure, the characterization of organic and inorganic pore in diagenetic evolution, and dynamic evaluation for fracability are the key studying aspects in experimental technologies of geological evaluation of shale gas.

Cite this article

Xuhui XU , Baojian SHEN , Zhiming LI , Wentao ZHANG , Lingjie YU , Zhongliang MA . Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(1) : 1 -8 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.01.001

References

[1] 马永生, 蔡勋育, 赵培荣 . 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574.
[1] MA Y S, CAI X Y, ZHAO P R . China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574.
[2] 蒋恕 . 页岩气开发地质理论创新与钻完井技术进步[J]. 石油钻探技术, 2011,39(3):17-23.
[2] JIANG S . Geological theory innovations and advances in drilling and completion technology for shale gas development[J]. Drilling Petroleum Techniques, 2011,39(3):17-23.
[3] 郭旭升, 郭彤楼, 魏志红 , 等. 中国南方页岩气勘探评价的几点思考[J]. 中国工程科学, 2012,14(6):101-105.
[3] GUO X S, GUO T L, WEI Z H , et al. Thoughts on shale gas exploration in southern China[J]. Engineering Science, 2012,14(6):101-105.
[4] LOUCKS R G, REED R M, RUPPEL S C , et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of sedimentary research, 2009,79(12):848-861.
[5] JARVIE D M, HILL R J, RUBLE T E , et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin, 2007,91(4):475-499.
[6] 金之钧 . 中国海相碳酸盐岩层系油气勘探特殊性问题[J]. 地学前缘, 2005,12(3):15-22.
[6] JIN Z J . Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J]. Earth Science Frontiers, 2005,12(3):15-22.
[7] 刘光祥 . 中上扬子北缘中古生界海相烃源岩特征[J]. 石油实验地质, 2005,27(5):490-495.
[7] LIU G X . Characteristics of middle paleozoic marine source rock in the north margin of middle and upper Yangtze Region[J]. Petroleum Geology & Experiment, 2005,27(5):490-495.
[8] 戴鸿鸣, 黄东, 刘旭宁 , 等. 蜀南西南地区海相烃源岩特征与评价[J]. 天然气地球科学, 2008,19(4):503-508.
[8] DAI H M, HUANG D, LIU X N , et al. Characteristics and evaluation of marine source rock in southwestern Shunan[J]. Natural Gas Geoscience, 2008,19(4):503-508.
[9] 胡明霞, 曹寅 . 下古生界烃源岩有机显微组分分类与应用[J]. 石油实验地质, 2007,29(4):432-435.
[9] HU M X, CAO Y . Classification and application of organic macerals in the lower paleozoic hydrocarbon source rock[J]. Petroleum Geology & Experiment, 2007,29(4):432-435.
[10] 梁狄刚, 郭彤楼, 边立曾 , 等. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009,14(2):1-19.
[10] LIANG D G, GUO T L, BIAN L Z , et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(Part 3): Controlling factors on the sedimentary facies and development of palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009,14(2):1-19.
[11] 秦建中, 陶国亮, 腾格尔 , 等. 南方海相优质页岩的成烃生物研究[J]. 石油实验地质, 2010,32(3):262-269.
[11] QIN J Z, TAO G L, BORJIGEN T , et al. Hydrocarbon-forming organisms in excellent marine source rocks in South China[J]. Petroleum Geology & Experiment, 2010,32(3):262-269.
[12] ZHANG Z R, HU W X, SONG X Y , et al. A comparison of results from two different flash pyrolysis methods on a solid bitumen sample[J]. Organic geochemistry, 2014,69:36-41.
[13] 申宝剑, 仰云峰, 腾格尔 , 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨——以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016,38(4):480-488.
[13] SHEN B J, YANG Y F, BORJIGEN T , et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin:A case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016,38(4):480-488.
[14] 蒋启贵 . 现代生物物质生烃机制动力学研究[J]. 沉积学报, 2009,27(3):546-550.
[14] JIANG Q G, WANG Y B, QIN J Z , et al. Kinetic Study on Hydrocarbon Generation Mechanism of Modern Organisms[J]. Acta Sedimentologica Sinica, 2009,27(3):546-550.
[15] 徐旭辉, 郑伦举, 马中良 . 泥页岩中有机质的赋存形态与油气形成[J]. 石油实验地质, 2016,38(4):423-428.
[15] XU X H, ZHENG L J, MA Z L . Organic matter occurrence and hydrocarbon generation in shale[J]. Petroleum Geology & Experiment, 2016,38(4):423-428.
[16] 郭旭升, 李宇平, 腾格尔 , 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020,47(1):1-9.
[16] GUO X S, LI Y P, BORJIGEN T , et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020,47(1):1-9.
[17] 刘洪林, 王红岩 . 中国南方海相页岩吸附特征及其影响因素[J]. 天然气工业, 2012,32(9):5-9.
[17] LIU H L, WANG H Y . Adsorption Characteristics and Influencing Factors of Marine Shale in South China[J]. Natural Gas Industry, 2012,32(9):5-9.
[18] 俞凌杰, 范明, 陈红宇 , 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015,36(5):557-563.
[18] YU L J, FAN M, CHEN H Y , et al. Isothermal Adsorption Experiment of Organic-rich Shale Under High Temperature and Pressure Using Gravimetric Method[J]. Acta Petrolei Sinica, 2015,36(5):557-563.
[19] 丁安徐, 李小越, 蔡潇 , 等. 页岩气地质评价实验测试技术研究进展[J]. 天然气与石油, 2014,32(2):43-48.
[19] DING A X, LI X Y, CAI X , et al. Research Progress of Shale Gas Geological Evaluation Test Technology[J]. Natural Gas and Oil, 2014,32(2):43-48.
[20] 魏志红, 魏祥峰 . 页岩不同类型孔隙的含气性差异——以四川盆地焦石坝地区五峰组—龙马溪组为例[J]. 天然气工业, 2014,34(6):37-41.
[20] WEI Z H, WEI X F . Comparison of gas-bearing property between different pore types of shale: A case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):37-41.
[21] 马晓潇, 黎茂稳, 庞雄奇 , 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016,38(2):278-286.
[21] MA X X, LI M W, PANG X Q , et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016,38(2):278-286.
[22] GOTTLIEB P, WILKIE G, SUTHERLAND D , et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of the Minerals, Metals and Materials Society, 2000,52(4):24-25.
[23] CUI X BUSTIN A M M, BUSTIN R M. , Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009,9(3):208-223.
[24] LUFFEL D L, GUIDRY F K, CURTIS J B , et al. Evaluation of Devonian shale with new core and log analysis methods[J]. Journal of Petroleum Technology, 1992,44(11):1192-1197.
[25] BUSTIN R M, BUSTIN A M M, CUI A, et al. Impact of shale properties on pore structure and storage characteristics[C]// paper SPE-119892-MS presented at the SPE Shale Gas Production Conference, 16-18 November 2008, Fort Worth, Texas, USA.
[26] BERNARD S, BOWEN L, WIRTH R, et al. FIB-SEM and TEM investigations of an organic-rich shale maturation series from the lower toarcian posidonia shale, Germany: Nanoscale pore system and fluid-rock interactions[C]// CAMP W K, DIAZ E, WAWAK B. Electron Microscopy of Shale Hydrocarbon Reservoir: AAPG Memoir 102. Tulsa: The American Association of Petroleum Geologists, 2013: 53-66.
[27] 李庆辉, 陈勉, 金衍 , 等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012,31(8):1680-1685.
[27] LI Q H, CHEN M, JIN Y , et al. Laboratory Evaluation Method and Improvement of Shale Brittleness[J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(8):1680-1685.
[28] SLATT R M, ABOUSLEIMAN Y . Merging sequence stratigraphy and geomechanics for unconventional gas shales[J]. The Leading Edge, 2011,30(3):274-282.
[29] WANG F P, GALE J F W. Screening criteria for shale-gas systems[J]. GCAGS Transactions, 2009,59:779-793.
[30] KOHLSTEDT D L, EVANS B, MACKWELL S J . Strength of the lithosphere: constraints imposed by laboratory experiments[J]. Journal of Geophysical Research Solid Earth, 1995,100(B9):17587-17602.
[31] ISHII E, SANADA H, FUNAKI H , et al. The relationships among brittleness, deformation behavior, and transport properties in mudstones: An example from the Horonobe Underground Research Laboratory, Japan[J]. Journal of Geophysical Research: Solid Earth, 2011,116(B9):26-31.
Outlines

/