Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 1: 22 - 29
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.01.004
Post-fracturing numerical simulation of shale gas reservoir based on complex flow mechanisms
Received date: 2019-07-23
Online published: 2020-02-04
In shale gas reservoirs with natural fractures, the artificial fractures and natural fractures communicate with each other after fracturing. The traditional dual media model can not accurately reflect the impact of natural fractures on well production. In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer-size pores, the mathematical model of multi-stage fractured horizontal well in shale gas reservoir is built, which considers the influence of the complex flow mechanism such as the viscous flow, Knudsen diffusion, surface diffusion, adsorption layerand gas desorption. Discrete fracture model(DFM) is used to simplify the fracture and finite element method is applied to solve the model. The numerical simulation results of Pingqiao shale gas reservoir indicate that the free gas in fracture system mainly contributes to shale gas production in the early stage, and the average recovery of adsorbed gas is only 10.1 %. The existence of unmodified reservoir makes the influence of bedrock permeability on cumulative production greater. The density and connectivity of fracture networks have dominant effects on gas production and its decline trend.
Wei WANG , Yang LI , Zuhua CHEN , Jun YAO , Junwei MEI , Jianhua REN , Bo MA . Post-fracturing numerical simulation of shale gas reservoir based on complex flow mechanisms[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(1) : 22 -29 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.01.004
[1] | WU X, REN Z Y, WANG Y , et al. Situation of world shale gas exploration and development[J]. Resources & Industries, 2013,15(5):61-67. |
[2] | ZHANG D W . Strategic concepts of accelerating the survey exploration and exploitation of shale gas resources in China[J]. Oil & Gas Geology. 2010,31(2):135-139. |
[3] | 郭彤楼 . 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016,43(3):317-326. |
[3] | GUO T L . Key geological issues and main controls on accumulation and enrichment of Chinese shale gaas[J]. Petroleum Exploration and Development, 2016,43(3):317-326. |
[4] | 谢军 . 长宁—威远国家级页岩气示范区建设实践与成效[J]. 天然气工业, 2018,38(2):1-7. |
[4] | XIE J . Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J]. Natural Gas Industry, 2018,38(2):1-7. |
[5] | ZOU C N, DONG D Z, YANG H , et al. Conditions of shale gas accumulation and exploration practices in China[J]. Natural Gas Industry, 2011,31(12):26-39. |
[6] | DONG D Z, ZOU C N, YANG H , et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012,33(A1):107-114. |
[7] | 蔡进, 吉婧, 刘莉 , 等. 湘鄂西—鄂西渝东地区上奥陶统五峰—下志留统龙马溪组页岩气成藏条件研究[J]. 非常规油气, 2019,6(4):18-24. |
[7] | CAI J, JI J, LIU L , et al. Study on shale gas accumulation condition of Upper Ordovician Wufeng Formation-Lower Silurian series Long maxi Formation in Western Hubei and Hunan—western Hubei and eastern Chongqing area[J]. Unconventional Oil & Gas, 2019,6(4):18-24. |
[8] | 刘洪, 廖如刚, 李小斌 , 等. 页岩气“井工厂”不同压裂模式下裂缝复杂程度研究[J]. 天然气工业, 2018,38(12):70-76. |
[8] | LIU H, LIAO R G, LI X B , et al. A comparative analysis on the fracture complexity in different fracking patterns of shale gas "well factory"[J]. Natural Gas Industry, 2018,38(12):70-76. |
[9] | 段华, 李荷婷, 代俊清 , 等. 深层页岩气水平井“增净压、促缝网、保充填”压裂改造模式——以四川盆地东南部丁山地区为例[J]. 天然气工业, 2019,39(2):66-70. |
[9] | DUAN H, LI H T, DAI J Q , et al. Horizontal well fracturing mode of "increasing net pressure, promoting network fracture and keeping conductivity" for the stimulation of deep shale gas reservoirs: A case study of the Dingshan area in SE Sichuan Basin[J]. Natural Gas Industry, 2019,39(2):66-70. |
[10] | 缪思钰, 张海江, 陈余宽 , 等. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J]. 石油物探, 2019,58(2):262-271. |
[10] | MIAO S Y, ZHANG H J, CHEN Y K , et al. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Geophysical Prospecting for Petroleum, 2019,58(2):262-271. |
[11] | 伍葳, 吴坷, 文春宇 , 等. 长宁页岩气井水平段钻井参数强化对比评价[J]. 非常规油气, 2019,6(5):80-84. |
[11] | WU W, WU K, WEN C Y , et al. The comparison analysis of drilling parameter optimizing practice in the horizontal section of two specific shale gas wells in Changning area[J]. Unconventional Oil & Gas, 2019,6(5):80-84. |
[12] | 姚军, 王子胜, 张允 , 等. 天然裂缝性油藏的离散裂缝网络数值模拟方法[J]. 石油学报, 2010,31(2):284-288. |
[12] | YAO J, WANG Z S, ZHANG Y , et al. Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J]. Acta Petrolei Sinica, 2010,31(2):284-288. |
[13] | 张允, 袁向春, 姚军 , 等. 离散裂缝性油藏数值模拟方法[J]. 大庆石油学院学报, 2010,34(3):80-85. |
[13] | ZHANG Y, YUAN X C, YAO J , et al. Discrete fracture numerical simulation methods for reservoirs[J]. Journal of Daqing Petroluem Institute, 2010,34(3):80-85. |
[14] | 黄朝琴, 姚军, 王月英 , 等. 基于离散裂缝模型的裂缝性油藏注水开发数值模拟[J]. 计算物理, 2011,28(1):41-49. |
[14] | HUANG Z Q, YAO J, WANG Y Y , et al. Numerical simulation on water flooding development of fractured reservoirs in a discrete-fracture model[J]. Chinese Journal of Computational Physics, 2011,28(1):41-49. |
[15] | 许文俊, 李勇明, 赵金洲 , 等. 页岩气水平井分段压裂复杂缝网形成机制[J]. 油气藏评价与开发, 2017,7(5):64-73. |
[15] | XU W J, LI Y M, ZHAO J Z , et al. Formation mechanism of complex fracture network under horizontal well staged fracturing in shale gas reservoir[J]. Reservoir Evaluation and Development, 2017,7(5):64-73. |
[16] | 吕心瑞, 姚军, 黄朝琴 , 等. 基于有限体积法的离散裂缝模型两相流动模拟[J]. 西南石油大学学报(自然科学版), 2012,34(6):123-130. |
[16] | LYU X R, YAO J, HUANG Z Q , et al. Study on discrete fracture model two-phase flow simulation based on finite volume method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012,34(6):123-130. |
[17] | 黄朝琴, 高博, 王月英 , 等. 基于模拟有限差分法的离散裂缝模型两相流动模拟[J]. 中国石油大学学报(自然科学版), 2014,38(6):97-105. |
[17] | HUANG Z Q, GAO B, WANG Y Y , et al. Two-phase flow simulation of discrete fracture model using a novel mimetic finite difference method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014,38(6):97-105. |
[18] | SUN H, YAO J, FAN D Y , et al. Gas transport mode criteria in ultra-tight porous media[J]. International Journal of Heat and Mass Transfer, 2015,83:192-199. |
[19] | KAST W, HOHENTHANNER C R . Mass transfer within the gas-phase of porous media[J]. International Journal of Heat and Mass Transfer, 2000,43(5):807-823. |
[20] | FLORENCE F A, RUSHING J, NEWSHAM K E, et al. Improved permeability prediction relations for low permeability sands[C]// paper SPE-107954-MS presented at the Rocky Mountain Oil & Gas Technology Symposium, 16-18 April 2007, Denver, Colorado, USA. |
[21] | WU Y S, LI J F, DING D , et al. A generalized framework model for the simulation of gas production in unconventional gas reservoirs[J]. SPE Journal, 2014,19(5):845-857. |
[22] | 孙海 . 页岩气藏多尺度流动模拟理论与方法[D]. 青岛:中国石油大学(华东), 2013. |
[22] | SUN H . Multi-scale simulation theory and method of gas transport in shale gas reservoirs[D]. Qingdao: China University of Petroleum(East China), 2013. |
[23] | ESHKALAK M O. AYBAR U, SEPEHRNOORI K . An integrated reservoir model for unconventional resources, coupling pressure dependent phenomena[C]// paper SPE-171008-MS presented at the SPE Eastern Regional Meeting, 21-23 October 2014, Charleston, West Virginia , USA. |
[24] | 王伟 . 页岩气藏产能计算方法与分析[D]. 青岛:中国石油大学(华东), 2017. |
[24] | WANG W . Computational methods and analysis of productivity in shale gas reservoir[D]. Qingdao: China University of Petroleum(East China), 2017. |
[25] | KARIMI-FARD M, DURLOFSKY L J, AZIZ K . An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J]. SPE Journal, 2004,9(2):227-236. |
/
〈 | 〉 |