Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 1: 30 - 36
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.01.005
A quantitative characterization method for organic and inorganic pores in shale
Received date: 2019-07-24
Online published: 2020-02-04
The results of surface porosity obtained by scanning electron microscopy image processing can effectively reflect the development degree of shale organic matter pore. On the premise that the statistical sample is large enough, the pore size of organic matter can be quantitatively characterized relatively accurately. Due to the limitation of absolute resolution of scanning electron microscopy, the organic pore content was underestimated in the pore size range of less than 2 nm. The results of pore size distribution obtained by adsorption method need to be corrected. Combined with TOC and effective porosity, the porosity of shale organic matter can be calculated, and the proportion of organic and inorganic pore can be obtained indirectly. The data of 4 shale gas wells in southeastern Chongqing show that organic pore is the main type in Wulong and Dongsheng area, and the proportion of organic pore in bottom layer(① to ②) is high, up to 85.89 %. Pengshui area is controlled by organic carbon, and the proportion of organic pore is not more than 20 %. The organic pore proportion in Pingqiao area ranges from 20 % to 30 %, and the bedding fissures and laminar structures are relatively developed, especially the possible fissures or grain margin fissures between clastic particles and muddy interbeds in laminar structures contribute greatly to the inorganic pore. The proportion of organic pore is mainly affected by the abundance of organic matter and the degree of pore development of organic matter. The ratio of organic pore is highly consistent with the variation of TOC content in the vertical direction.
Key words: shale; pore; organic pore; inorganic pore; quantify
Xiao CAI , Yaxi JIN , Jianguo YE , Liu PENG , Jingrong SUN , Yichuan ZHU . A quantitative characterization method for organic and inorganic pores in shale[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(1) : 30 -36 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.01.005
[1] | 张勇 . 彭水区块页岩脆性与含气性定性预测[J]. 油气藏评价与开发, 2017,7(1):78-82. |
[1] | ZHANG Y . Shale brittleness and gas bearing property prediction of Pengshui block[J]. Reservoir Evaluation and Development, 2017,7(1):78-82. |
[2] | 蔡进 . 四川盆地焦石坝地区五峰组—龙马溪组页岩储层成岩作用研究[J]. 矿物岩石, 2017,37(4):103-109. |
[2] | CAI J . Study of shale reservoir diagenesis of the Wufeng-Longmaxi Fomations in the Jiaoshiba area, Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2017,37(4):103-109. |
[3] | 李佳欣 . 观音桥段地质特征及其对页岩气产量的影响——以南川地区为例[J]. 油气藏评价与开发, 2018,8(4):68-72. |
[3] | LI J X . Geological features of Guanyinqiao member and its influence on the shale gas production: A case study of Nanchuan district[J]. Reservoir Evaluation and Development, 2018,8(4):68-72. |
[4] | 田巍, 邓瑞健, 朱维耀 , 等. 页岩压裂缝网储层应力敏感性及对产能的影响[J]. 油气藏评价与开发, 2017,7(6):71-77. |
[4] | TIAN W, DENG R J, ZHU W Y , et al. Stress sensitivity of shale reservoir fracture network and its effect on productivity[J]. Reservoir Evaluation and Development, 2017,7(6):71-77. |
[5] | 陈红宇, 卢龙飞, 刘伟新 , 等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质, 2017,39(3):341-347. |
[5] | CHEN H Y, LU L F, LIU W X , et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petroleum Geology & Experiment, 2017,39(3):341-347. |
[6] | 陈居凯, 朱炎铭, 崔兆帮 , 等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018,30(1):55-62. |
[6] | CHEN J K, ZHU Y M, CUI Z B , et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2018,30(1):55-62. |
[7] | 曹涛涛, 宋之光, 王思波 , 等. 上扬子区古生界页岩的微观孔隙结构特征及其勘探启示[J]. 海相油气地质, 2015,20(1):71-78. |
[7] | CAO T T, SONG Z G, WANG S B , et al. Characteristics of microscopic pore structure in Paleozoic shales in Upper Yangtze Region and its enlightenment for shale gas exploration[J]. Marine Origin Petroleum Geology, 2015,20(1):71-78. |
[8] | 段瑶瑶 . 松辽盆地上白垩统嫩江组泥页岩孔隙特征及其与成岩作用关系——以松科1井、2井为例[D]. 北京:中国地质大学, 2017. |
[8] | DUAN Y Y . The pore characteristics of shale of the Upper Creataceous Nenjiang Formation in Songliao Basin and its relation to diagenesis: Taking Songke 1 and 2 wells as an example[D]. Beijing: China University of Geosciences, 2017. |
[9] | 甘玉青, 王超, 方栋梁 , 等. 四川盆地焦石坝地区五峰—龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J]. 石油实验地质, 2018,40(1):78-89. |
[9] | GAN Y Q, WANG C, FANG D L , et al. Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to shale gas development[J]. Petroleum Geology & Experiment, 2018,40(1):78-89. |
[10] | 刘玉霞, 王亮, 程秀梅 , 等. 高成熟度页岩有机孔隙结构与压力系数关系初探——以川东南志留统龙马溪组为例[J]. 油气藏评价与开发, 2017,7(4):77-82. |
[10] | LIU Y X, WANG L, CHENG X M , et al. Research on relationship between organic pore structure and pressure coefficients in shale with high maturity: A case from Longmaxi formation, southeastern Sichuan[J]. Reservoir Evaluation and Development, 2017,7(4):77-82. |
[11] | 刘国恒, 黄志龙, 姜振学 , 等. 鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J]. 天然气地球科学, 2015,26(3):408-417. |
[11] | LIU G H, HUANG Z L, JIANG Z X , et al. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J]. Natural Gas Geoscience, 2015,26(3):408-417. |
[12] | 梁兴, 张廷山, 杨洋 , 等. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素[J]. 天然气工业, 2014,34(2):18-26. |
[12] | LIANG X, ZHANG T S, YANG Y , et al. Microscopic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou provinces of China[J]. Natural Gas Industry, 2014,34(2):18-26. |
[13] | 许文俊, 李勇明, 赵金洲 , 等. 页岩气水平井分段压裂复杂缝网形成机制[J]. 油气藏评价与开发, 2017,7(5):64-73. |
[13] | XU W J, LI Y M, ZHAO J Z , et al. Formation mechanism of complex fracture network under horizontal well staged fracturing in shale gas reservoir[J]. Reservoir Evaluation and Development, 2017,7(5):64-73. |
[14] | JARVIE D M, HILL R J, RUBLE T E , et al. Unconventional shale gas system: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007,91(4):475-499. |
[15] | LOUCKS R G, REED R M, RUPPEL S C , et al. Spectrum of pore types and networks in mudrocks and descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012,96(6):1071-1098. |
[16] | 李留仁, 赵艳艳, 李忠兴 , 等. 多孔介质微观孔隙结构分形特征及分形系数的意义[J]. 中国石油大学学报(自然科学版), 2004,28(3):105-107. |
[16] | LI L R, ZHAO Y Y, LI Z X , et al. Fractal characteristics of micropore structure of porous media and the meaning of fractal coefficient[J]. Journal of China University of Petroleum(Edition of Natural Science), 2004,28(3):105-107. |
[17] | 李子文, 林柏泉, 郝志勇 , 等. 煤体多孔介质孔隙度的分形特征研究[J]. 采矿与安全工程学报, 2013,30(3):437-442. |
[17] | LI Z W, LIN B Q, HAO Z Y , et al. Fractal characteristics of porosity for porous media in coal mass[J]. Journal of Mining and Safety Engineering, 2013,30(3):437-442. |
[18] | 付常青, 朱炎铭, 陈尚斌 . 成岩作用对滇东地区筇竹寺组页岩孔隙特征的控制机制[J]. 煤炭学报, 2015,40(S2):439-448. |
[18] | FU C Q, ZHU Y M, CHEN S B . Diagenesis controlling mechanism of pore characteristics in the Qiongzhusi Formation Shale, East Yunnan[J]. Journal of China Coal Society, 2015,40(S2):439-448. |
[19] | 蒋廷学, 卞晓冰, 王海涛 , 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017,37(1):90-96. |
[19] | JIANG T X, BIAN X B, WANG H T , et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017,37(1):90-96. |
[20] | 卢双舫, 李俊乾, 张鹏飞 , 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018,45(3):436-444. |
[20] | LU S F, LI J Q, ZHANG P F , et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018,45(3):436-444. |
[21] | HOUBEN M E, DESBOIS G, URAI J L , et al. A comparative study of representative 2D microstructures in shaly and sandy facies of Opalinus Clay(Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[J]. Marine and Petroleum Geology, 2014,49:143-161. |
[22] | 衡帅, 杨春和, 郭印同 , 等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 2015,34(2):228-237. |
[22] | HENG S, YANG C H, GUO Y T , et al. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(2):228-237. |
[23] | 黄振凯, 陈建平, 薛海涛 , 等. 松辽盆地白垩系青山口组泥页岩孔隙结构特征[J]. 石油勘探与开发, 2013,40(1):58-65. |
[23] | HUANG Z K, CHEN J P, XUE H T , et al. Microstructural characteristics of the Cretaceous Qingshankou Formation shale, Songliao Basin[J]. Petroleum Exploration and Development, 2013,40(1):58-65. |
[24] | 王运海 . 四川盆地平桥地区五峰—龙马溪组页岩微观孔隙特征研究[J]. 石油实验地质, 2018,40(3):337-344. |
[24] | WANG Y H . Micro-pore characteristics of shale from Wufeng-Longmaxi formations in Pingqiao area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018,40(3):337-344. |
[25] | 何陈诚, 何生, 郭旭升 , 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018,39(3):472-484. |
[25] | HE C C, HE S, GUO X S , et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):472-484. |
[26] | 高全芳 . 武隆向斜五峰组—龙马溪组优质页岩特征及水平井靶窗优选[J]. 非常规油气, 2019,30(3):99-105. |
[26] | GAO Q F . The High-quality shale characteristics of Wufeng Formation-Longmaxi Formation in Wulong Syncline and the Best Target of horizontal well[J]. Unconventional Oil & Gas, 2019,30(3):99-105. |
/
〈 | 〉 |