Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 1: 56 - 63
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.01.009
Effect of oxidizing working fluid on permeability of organic-rich shale
Received date: 2019-07-09
Online published: 2020-02-04
Organic-rich shale deposits in the anoxic reductive environment, and is rich in pyrite, chlorite, organic matter and other reductive components. In the process of oil and gas development, a large amount of oxidizing working fluids enter the reservoir, which is incompatible with rock and fluids in reservoir, thus breaking the physical and chemical equilibrium between shale reservoir and formation fluids such as oil, gas and water. The organic-rich shale of Silurian Longmaxi Formation in Pengshui area of southeast Sichuan Basin was selected to conduct the experiment on the interaction between oxidizing fluid and organic-rich shale, so that to analyze the effect of oxidizing working fluid on shale reservoir permeability. The results show that the after the contact of organic shale and oxidizing working fluid, the permeability will change with the fluid oxidation-reduction potential(Eh), which is called oxygen sensitivity. When the fluid oxidation-reduction potential is less than 450 mV, the generated chemical precipitation solid particles and solid particles of shale debris, such as Fe2O3, Fe(OH)3, siderite(FeCO3), calcium sulphate dihydrate(CaSO4·2H2O), MgSO4 and BaSO4, lead to the reduction of shale permeability. Regulating Eh of working fluid, inhibiting oxygen sensitivity damage, and playing the role of oxidation and permeability enhancement are the development direction of completion fluid of oil and gas reservoirs under reductive environment.
Lijun YOU , Yang ZHOU , Yili KANG , Liandong DOU , Qiuyang CHENG . Effect of oxidizing working fluid on permeability of organic-rich shale[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(1) : 56 -63 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.01.009
[1] | 郭亮, 李养池, 张新发 , 等. 新型钻井液用除氧剂的研制与评价[J]. 广州化工, 2014,42(5):76-78. |
[1] | GUO L, LI Y C, ZHANG X F , et al. New drilling fluid with the development and evaluation of oxygen scavenger[J]. Guangzhou Chemical Industry, 2014,42(5):76-78. |
[2] | RAHM D . Regulating hydraulic fracturing in shale gas plays: The case of Texas[J]. Energy Policy, 2011,39(5):2974-2981. |
[3] | 康毅力, 张晓怡, 游利军 , 等. 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学, 2017,28(6):819-827. |
[3] | KANG Y L, ZHANG X Y, YOU L J , et al. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs[J]. Natural Gas Geoscience, 2017,28(6):819-827. |
[4] | 唐代绪, 赵金海, 王华 , 等. 美国Barnett页岩气开发中应用的钻井工程技术分析与启示[J]. 中外能源, 2011,16(4):47-52. |
[4] | TANG D X, ZHAO J H, WANG H , et al. Technology analysis and enlightenment of drilling engineering applied in the development of Barnett Shale Gas in America[J]. Sino-Global Energy, 2011,16(4):47-52. |
[5] | 解立春, 赵金玲 . 安塞油田采出水腐蚀性及缓蚀处理[J]. 油田化学, 2008,25(3):227-231. |
[5] | XIE L C, ZHAO J L . The corrosivity and corrosion inhibiting treatments of produced waters for reservoir flooding in Ansai Oil Field[J]. Oilfield Chemistry, 2008,25(3):227-231. |
[6] | 涂弈州, 李慧强, 操卫平 , 等. 页岩气压裂返排液破胶剂筛选[J]. 油气田环境保护, 2017,27(2):27-30. |
[6] | TU Y Z, LI H Q, CAO W P , et al. Screening of gel breaking agent for hydraulic fracturing flowback fluid treatment[J]. Environmental Protection of Oil & Gas Field, 2017,27(2):27-30. |
[7] | 陆绍信, 王廷芬 . 不同氧化剂对黄县油页岩氧化的影响[J]. 华东石油学院学报(自然科学版), 1987,11(1):78-85. |
[7] | LU S X, WANG T F . Effect of different oxidants on the oxidation of Huangxian oil shale[J]. Journal of East China Petroleum Institute, 1987,11(1):78-85. |
[8] | CHEN Q, KANG Y L, YOU L J , et al. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J]. International Journal of Coal Geology, 2017,172:95-111. |
[9] | YOU L J, CHENG Q Y, KANG Y L , et al. Imbibition of oxidative fluid into organic-rich shale: Implication for oxidizing stimulation[J]. Energy & Fuels, 2018,32(10):10457-10468. |
[10] | 游利军, 康毅力, 陈强 , 等. 氧化爆裂提高页岩气采收率的前景[J]. 天然气工业, 2017,37(5):53-61. |
[10] | YOU L J, KANG Y L, CHEN Q , et al. Prospect of shale gas recovery enhancement by oxidation-induced rock burst[J]. Natural Gas Industry, 2017,37(5):53-61. |
[11] | 游利军, 杨鹏飞, 崔佳 , 等. 页岩气层氧化改造的可行性[J]. 油气地质与采收率, 2017,24(6):79-85. |
[11] | YOU L J, YANG P F, CUI J , et al. Feasibility of oxidative stimulation in organic matter-rich shale gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):79-85. |
[12] | 张汉荣, 王强, 倪楷 , 等. 川东南五峰-龙马溪组页岩储层六性特征及主控因素分析[J]. 石油实验地质, 2016,38(3):320-325. |
[12] | ZHANG H R, WANG Q, NI K , et al. Six characteristics and main controlling factors of shale reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(3):320-325. |
[13] | 刘玉霞, 王亮, 程秀梅 , 等. 高成熟度页岩有机孔隙结构与压力系数关系初探——以川东南志留统龙马溪组为例[J]. 油气藏评价与开发, 2017,7(4):77-82. |
[13] | LIU Y X, WANG L, CHENG X M , et al. Research on relationship between organic pore structure and pressure coefficients in shale with high maturity: A case from Longmaxi formation, southeastern Sichuan[J]. Reservoir evaluation and development, 2017,7(4):77-82. |
[14] | 温丹妮 . 氧化还原电位的研究进展及相关应用[J]. 轻工科技, 2017,33(7):101-103. |
[14] | WEN D N . Research progress of REDOX potential and related applications[J]. Light industry science and technology, 2017,33(7):101-103. |
[15] | 宋金明, 李延, 朱仲斌 . Eh和海洋沉积物氧化还原环境的关系[J]. 海洋通报, 1990,9(4):33-39. |
[15] | SONG J M, LI Y, ZHU Z B . Relationship between Eh Value and redox environment in marine sediments[J]. Marine Science Bulletin, 1990,9(4):33-39. |
[16] | 游利军, 谢本彬, 杨建 , 等. 页岩气井压裂返排液对储层裂缝的损害机理[J]. 天然气工业, 2018,38(12):61-69. |
[16] | YOU L J, XIE B B, YANG J , et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018,38(12):61-69. |
[17] | 关小旭 . 川东龙马溪组页岩储层损害机理与控制方法研究[D]. 成都:成都理工大学, 2016. |
[17] | GUAN X X . Study of the mechanism and control methods of formation damage for Longmaxi shale formation in eastern Sichuan[D]. Chengdu: Chengdu Univerisity of Technology, 2016. |
[18] | 国家能源局. 储层敏感性流动实验评价方法:SY/T 5358—2010[S]. 北京: 石油工业出版社, 2010. |
[18] | National Energy Administration. Experimental evaluation method of reservoir sensitivity: SY/T 5358—2010[S]. Beijing: Petroleum Industry Press, 2010. |
[19] | 余川, 周洵, 方光建 , 等. 地层温压条件下页岩吸附性能变化特征——以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018,30(6):10-17. |
[19] | YU C, ZHOU X, FANG G J , et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing[J]. Lithologic Reservoirs, 2018,30(6):10-17. |
[20] | CHEN Q, YOU L J, KANG Y L , et al. Gypsum-Crystallization-induced fracturing during shale-fluid reactions and application for shale stimulation[J]. Energy & Fuels, 2018,32(10):10367-10381. |
[21] | 蒋裕强, 付永红, 谢军 , 等. 海相页岩气储层评价发展趋势与综合评价体系[J]. 天然气工业, 2019,39(10):1-9. |
[21] | JIANG Y Q, FU Y H, XIE J , et al. Development trend of marine shale gas reservoir evaluation and a suitable comprehensive evaluation system[J]. Natural Gas Industry, 2019,39(10):1-9. |
[22] | 游利军, 康毅力, 陈强 , 等. 油气层氧敏性——概念、机理与意义[C]. 中国油气资源勘探开发工程技术论坛,北京, 2018. |
[22] | YOU L J, KANG Y L, CHEN Q , et al. Oil and gas reservoir oxidation sensitivity: Concept, mechanism and significance[C]. China Oil and Gas Resources Exploration and Development Engineering Technology Forum, Beijing, 2018. |
/
〈 |
|
〉 |