Reservoir Development

Study and practice on mechanism of EOR by N2 flooding in fractured-vuggy reservoirs with high temperature and high pressure

  • Tao TAN ,
  • Chen GUO ,
  • Yong CHEN ,
  • Lian DOU ,
  • Jian HUI
Expand
  • Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China
    2.Key Laboratory for EOR of Carbonate Fractured-Vuggy Reservoir of Sinopec, Urumqi, Xinjiang 830011, China

Received date: 2019-10-10

  Online published: 2020-04-28

Abstract

Carbonate fractured-vuggy reservoirs in Tahe oilfield have complex geological characteristics, which is mainly reflected in the various forms such as pore, fracture and cave developed in the reservoir, poor continuity of spatial distribution, complex combination mode, and the residual fracture-vuggy storage space formed in surface karst system by weathering. During the development, it is easy to form the bottom water coning along the high angle crack. The remaining oil between the wells outside the water channels and the “attic oil” stored by the residual fault are enriched in large quantities. In the earlier stage, the macroscopic mechanism of gravity displacement by using density difference in N2 injection of seam-hole reservoir is clarified by means of physical simulation. However, the displacement mechanism of the “attic oil” and the residual oil between wells is not clear. Through the simulation experiments of the effects of the injected N2 on the physical properties of crude oil under the conditions of 55 MPa and 130 ℃, the micro mechanism such as the effects of N2 on dissolution, expansion, capacity increase, extraction and dissolution of crude oil under the condition of high temperature and high pressure reservoir. Based on the fractured-vuggy geological characterization, visual physical model is made to observe the displacement mechanism of gravity displacement and water coning suppression during N2 injection. After field application, the feasibility and popularization potential of the technology are further proved.

Cite this article

Tao TAN , Chen GUO , Yong CHEN , Lian DOU , Jian HUI . Study and practice on mechanism of EOR by N2 flooding in fractured-vuggy reservoirs with high temperature and high pressure[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(2) : 60 -64 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.02.010

References

[1] 赵锐, 赵腾, 李慧莉 , 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019,26(5):8-13.
[1] ZHAO R, ZHAO T, LI H L , et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019,26(5):8-13.
[2] 吕心瑞, 李红凯, 魏荷花 , 等. 碳酸盐岩储层多尺度缝洞体分类表征——以塔河油田S80单元奥陶系油藏为例[J]. 石油与天然气地质, 2017,38(4):813-821.
[2] LYU X R, LI H K, WEI H H , et al. Classification and characterization method for multi-scale fractured-vuggy reservoir zones in carbonate reservoirs: An example from Ordovician reservoirs in Tahe oilfield S80 unit[J]. Oil & Gas Geology, 2017,38(4):813-821.
[3] 刘遥, 荣元帅, 杨敏 . 碳酸盐岩缝洞型油藏缝洞单元储量精细分类评价[J]. 石油实验地质, 2018,40(3):431-438.
[3] LIU Y, RONG Y S, YANG M . Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J]. Petroleum Geology & Experiment, 2018,40(3):431-438.
[4] 郑松青, 崔书岳, 牟雷 . 缝洞型油藏物质平衡方程及驱动能量分析[J]. 特种油气藏, 2018,25(1):64-67.
[4] ZHENG S Q, CUI S Y, MU L . Material balance equation and driving energy analysis of fracture-cave oil reservoir[J]. Special Oil & Gas Reservoirs, 2018,25(1):64-67.
[5] 朱桂良, 刘中春, 宋传真 , 等. 缝洞型油藏不同注入气最小混相压力计算方法[J]. 特种油气藏, 2019,26(2):132-135.
[5] ZHU G L, LIU Z C, SONG C Z , et al. Minimum miscible pressure calculation method of gases injected in fracture-vug type reservoir[J]. Special Oil & Gas Reservoirs, 2019,26(2):132-135.
[6] 王连山, 陈军, 程汉列 . 塔中缝洞型碳酸盐岩凝析气藏气油比变化及见水预警[J]. 石油地质与工程, 2017,31(2):94-96.
[6] WANG L S, CHEN J, CHENG H L . Gas-oil ratio change and water breakthrough warning of condensate gas reservoir in fractured-vuggy carbonate reservoirs[J]. Petroleum Geology & Engineering, 2017,31(2):94-96.
[7] 张娟, 鲍典, 杨敏 , 等. 塔河油田西部古暗河缝洞结构特征及控制因素[J]. 油气地质与采收率, 2018,25(4):33-39.
[7] ZHANG J, BAO D, YANG M , et al. Analysis on fracture-cave structure characteristics and its controlling factor of palaeo-subterranean rivers in the western Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018,25(4):33-39.
[8] 田亮, 李佳玲, 袁飞宇 , 等. 塔河油田碳酸盐岩缝洞型油藏定量化注水技术研究[J]. 石油地质与工程, 2018,32(2):86-89.
[8] TIAN L, LI J L, YUAN F Y , et al. Quantitative water injection of fractured-cavity oil reservoir in carbonate rocks in Tahe oilfield[J]. Petroleum Geology & Engineering, 2018,32(2):86-89.
[9] 彭松, 郭平 . 缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究[J]. 石油实验地质, 2014,36(5):645-649.
[9] PENG S, GUO P . Physical simulation of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection[J]. Petroleum Geology & Experiment, 2014,36(5):645-649.
[10] 鲁新便, 荣元帅, 李小波 , 等. 碳酸盐岩缝洞型油藏注采井网构建及开发意义——以塔河油田为例[J]. 石油与天然气地质, 2017,38(4):658-664.
[10] LU X B, RONG Y S, LI X B , et al. Construction of injection-production well pattern in fractured-vuggy carbonate reservoir and its development significance: A case study from Tahe oilfield in Tarim Basin[J]. Oil & Gas Geology, 2017,38(4):658-664.
[11] 朱桂良, 孙建芳, 刘中春 . 塔河油田缝洞型油藏气驱动用储量计算方法[J]. 石油与天然气地质, 2019,40(2):436-442.
[11] ZHU G L, SUN J F, LIU Z C . An approach to calculate developed reserves in gas drive fractured-vuggy reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2019,40(2):436-442.
[12] 赵凤兰, 席园园, 侯吉瑞 , 等. 缝洞型碳酸盐岩油藏CO2注入方式及部位优化[J]. 油气地质与采收率, 2017,24(2):67-72.
[12] ZHAO F L, XI Y Y, HOU J R , et al. Optimization of injection manners and injection positions of CO2 huff and puff in fractured-vuggy carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):67-72.
[13] 苏伟, 侯吉瑞, 赵腾 , 等. 缝洞型碳酸盐岩油藏CO2单井吞吐生产特征及影响因素[J]. 油气地质与采收率, 2017,24(6):108-113.
[13] SU W, HOU J R, ZHAO T , et al. Production performance and influencing factors of CO2 huff and puff in the carbonate fractured-cavity reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):108-113.
[14] 吕铁 . 缝洞型油藏注N2吞吐参数优化研究[J]. 特种油气藏, 2018,25(5):119-124.
[14] LYU T . Nitrogen huff-puff parameter optimization in fracture-cavity reservoir[J]. Special Oil & Gas Reservoirs, 2018,25(5):119-124.
[15] 荣元帅, 胡文革, 蒲万芬 , 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015,37(5):599-605.
[15] RONG Y S, HU W G, PU W F , et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015,37(5):599-605.
[16] 王金锋 . 塔河油田缝洞型储层中洞穴充填程度半定量化分析[J]. 石油地质与工程, 2017,31(2):44-47.
[16] WANG J F . Half quantitative analysis of filling degree in caved type reservoir of fractured-vuggy reservoirs in Tahe oilfield[J]. Petroleum Geology & Engineering, 2017,31(2):44-47
[17] 金强, 田飞, 张宏方 . 塔河油田岩溶型碳酸盐岩缝洞单元综合评价[J]. 石油实验地质, 2015,37(3):272-279.
[17] JIN Q, TIAN F, ZHANG H F . Comprehensive evaluation of fracture-cave units in karst carbonates in Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2015,37(3):272-279.
[18] 肖阳, 何文, 罗慎超 , 等. 缝洞单元类型快速识别方法[J]. 油气地质与采收率, 2018,25(6):120-126.
[18] XIAO Y, HE W, LUO S C , et al. A fast recognition method of fractured-vuggy unit type[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):120-126.
[19] 肖阳, 江同文, 冯积累 , 等. 缝洞型碳酸盐岩油藏开发动态分析方法研究[J]. 油气地质与采收率, 2012,19(5):97-99.
[19] XIAO Y, JIANG T W, FENG J L , et al. Study of dynamic analytic method on fractured-vuggy carbonate reservoir[J]. Petroleum Geology and Recovery Efficiency, 2012,19(5):97-99.
Outlines

/