Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 2: 83 - 89
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.02.014
Application of flow potential analysis technique based on numerical simulation in the development of fractured-vuggy reservoir
Received date: 2020-02-07
Online published: 2020-04-28
The energy of fluid in oil reservoir determines the direction of fluid flow. In order to study the energy distribution of fluid in fractured-vuggy reservoirs, a theoretical model of fluid potential is established, and the 3D fluid potential characterization method is determined. The mechanism models of four typical fractured-vuggy structures, single hole with bottom water, single hole with side water, double hole with bottom water and double hole with side water, are use to study the change rules of flow potential, and five main control factors affecting the flow potential adjustment effect are determined, finally, the research on potential tapping of residual oil was carried out in combination with flow potential analysis. The results show that the adjustment of flow potential for the model of single hole with bottom water make the production wells work best. The model’s water multiple is the decisive factor, and the flow potential regulation effect is better when the water multiple is less than 10 times. The greater the discharge, the better the effect of water control for production wells. The proposed fluid potential solving model of fractured and cavern reservoir can truly reflect the changing rules of fluid energy distribution in the actual formation.
Chunhui DU , He QIU , Xiaofan CHEN , Liang TIAN , Ping YUE , Lu LI , Junbo YAO , bo WEI . Application of flow potential analysis technique based on numerical simulation in the development of fractured-vuggy reservoir[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(2) : 83 -89 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.02.014
[1] | 金强, 田飞, 张宏方 . 塔河油田岩溶型碳酸盐岩缝洞单元综合评价[J]. 石油实验地质, 2015,37(3):272-279. |
[1] | JIN Q, TIAN F, ZHANG H F . Comprehensive evaluation of fracture-cave units in karst carbonates in Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2015,37(3):272-279. |
[2] | 荣元帅, 胡文革, 蒲万芬 , 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015,37(5):599-605. |
[2] | RONG Y S, HU W G, PU W F , et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015,37(5):599-605. |
[3] | 吕心瑞, 李红凯, 魏荷花 , 等. 碳酸盐岩储层多尺度缝洞体分类表征——以塔河油田S80单元奥陶系油藏为例[J]. 石油与天然气地质, 2017,38(4):813-821. |
[3] | LYU X R, LI H K, WEI H H , et al. Classification and characterization method for multi-scale fractured-vuggy reservoir zones in carbonate reservoirs: An example from Ordovician reservoirs in Tahe oilfield S80 unit[J]. Oil & Gas Geology, 2017,38(4):813-821. |
[4] | 王金锋 . 塔河油田缝洞型储层中洞穴充填程度半定量化分析[J]. 石油地质与工程, 2017,31(2):44-47. |
[4] | WANG J F . Half quantitative analysis of filling degree in caved type reservoir of fractured-vuggy reservoirs in Tahe oilfield[J]. Petroleum Geology & Engineering, 2017,31(2):44-47 |
[5] | 刘遥, 荣元帅, 杨敏 . 碳酸盐岩缝洞型油藏缝洞单元储量精细分类评价[J]. 石油实验地质, 2018,40(3):431-438. |
[5] | LIU Y, RONG Y S, YANG M . Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J]. Petroleum Geology & Experiment, 2018,40(3):431-438. |
[6] | 张娟, 鲍典, 杨敏 , 等. 塔河油田西部古暗河缝洞结构特征及控制因素[J]. 油气地质与采收率, 2018,25(4):33-39. |
[6] | ZHANG J, BAO D, YANG M , et al. Analysis on fracture-cave structure characteristics and its controlling factor of palaeo-subterranean rivers in the western Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018,25(4):33-39. |
[7] | 肖阳, 何文, 罗慎超 , 等. 缝洞单元类型快速识别方法[J]. 油气地质与采收率, 2018,25(6):120-126. |
[7] | XIAO Y, HE W, LUO S C , et al. A fast recognition method of fractured-vuggy unit type[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):120-126. |
[8] | 朱桂良, 孙建芳, 刘中春 . 塔河油田缝洞型油藏气驱动用储量计算方法[J]. 石油与天然气地质, 2019,40(2):436-442. |
[8] | ZHU G L, SUN J F, LIU Z C . An approach to calculate developed reserves in gas drive fractured-vuggy reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2019,40(2):436-442. |
[9] | 彭松, 郭平 . 缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究[J]. 石油实验地质, 2014,36(5):645-649. |
[9] | PENG S, GUO P . Physical simulation of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection[J]. Petroleum Geology & Experiment, 2014,36(5):645-649. |
[10] | 苏伟, 侯吉瑞, 赵腾 , 等. 缝洞型碳酸盐岩油藏CO2单井吞吐生产特征及影响因素[J]. 油气地质与采收率, 2017,24(6):108-113. |
[10] | SU W, HOU J R, ZHAO T , et al. Production performance and influencing factors of CO2 huff and puff in the carbonate fractured-cavity reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):108-113. |
[11] | 赵凤兰, 席园园, 侯吉瑞 , 等. 缝洞型碳酸盐岩油藏CO2注入方式及部位优化[J]. 油气地质与采收率, 2017,24(2):67-72. |
[11] | ZHAO F L, XI Y Y, HOU J R , et al. Optimization of injection manners and injection positions of CO2 huff and puff in fractured-vuggy carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):67-72. |
[12] | 王连山, 陈军, 程汉列 . 塔中缝洞型碳酸盐岩凝析气藏气油比变化及见水预警[J]. 石油地质与工程, 2017,31(2):94-96. |
[12] | WANG L S, CHEN J, CHENG H L . Gas-oil ratio change and water breakthrough warning of condensate gas reservoir in fractured-vuggy carbonate reservoirs[J]. Petroleum Geology & Engineering, 2017,31(2):94-96. |
[13] | 鲁新便, 荣元帅, 李小波 , 等. 碳酸盐岩缝洞型油藏注采井网构建及开发意义——以塔河油田为例[J]. 石油与天然气地质, 2017,38(4):658-664. |
[13] | LU X B, RONG Y S, LI X B , et al. Construction of injection-production well pattern in fractured-vuggy carbonate reservoir and its development significance: A case study from Tahe oilfield in Tarim Basin[J]. Oil & Gas Geology, 2017,38(4):658-664. |
[14] | 田亮, 李佳玲, 袁飞宇 , 等. 塔河油田碳酸盐岩缝洞型油藏定量化注水技术研究[J]. 石油地质与工程, 2018,32(2):86-89. |
[14] | TIAN L, LI J L, YUAN F Y , et al. Quantitative water injection of fractured-cavity oil reservoir in carbonate rocks in Tahe oilfield[J]. Petroleum Geology & Engineering, 2018,32(2):86-89. |
[15] | 吕铁 . 缝洞型油藏注氮气吞吐参数优化研究[J]. 特种油气藏, 2018,25(5):119-124. |
[15] | LYU T . Nitrogen huff-puff parameter optimization in fracture-cavity reservoir[J]. Special Oil & Gas Reservoirs, 2018,25(5):119-124. |
[16] | HUBBERT M K . The theory of ground water motion[J]. Journal of Geology, 1940,48(8):785-944. |
[17] | HUBBERT M K . Entrapment of petroleum under hydrodynamic condition[J]. AAPG Bull, 1953,37(8):1954-2026. |
[18] | ENGLAND W A, MACKENZIE A S, MANN D M , et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the GeologicalSociety, 1987,144:327-347. |
[19] | ZAWISZA L K, DYLAG-WOJNA E, SMULSKI R J . Hydrodynamic conditions of hydrocarbon migration and accumulation exemplified by the Pomorsko, Czerwiensk, and Zarnowiec Oil Fields, Poland[C]// paper IPTC-10925-MS presented at the International Petroleum Technology Conference, 21-23 November 2005, Doha, Qatar. |
[20] | 刘劲歌, 樊洪海, 冯德永 , 等. 一种三维地层流体势的计算方法及其应用[J]. 油气地质与采收率, 2014,21(3):41-44. |
[20] | LIU J G, FAN H H, FENG D Y , et al. A kind of calculation method and its application on three-dimension fluid potential[J]. Petroleum geology and recovery factor, 2014,21(3):41-44. |
[21] | 赵俊威, 徐怀民, 何翠 , 等. 基于开发流体势场的低渗储层剩余油分布研究[J]. 中国科技论文, 2016,11(15):1693-1698. |
[21] | ZHAO J W, XU H M, HE C , et al. Research on remaining oil distribution in low permeability reservoir based on development fluid potential field[J]. China science and technology paper, 2016,11(15):1693-1698. |
[22] | 赵俊威, 徐怀民, 江同文 , 等. 基于开发流体势的蚁群算法在优势渗流通道预测中应用[J]. 高校地质学报, 2016,22(3):555-562. |
[22] | ZHAO J W, XU H M, JIANG T W , et al. The application of ant colony algorithm based on the theory of development fluid potential in predicting preponderance flow path[J]. Acta Geologica Sinica, 2016,22(3):555-562. |
[23] | 赵俊威, 徐怀民, 徐朝晖 , 等. 中高渗油藏开发流体势对剩余油分布控制机理[J]. 中国矿业大学学报, 2016,45(3):535-543. |
[23] | ZHAO J W, XU H M, XU Z H , et al. Controlling mechanism on remaining oil distribution by development fluid potential in middle-high permeability reservoir[J]. Journal of China university of mining and technology, 2016,45(3):535-543. |
[24] | 谭亦然 . 塔河缝洞型油藏AD4井区井间连通性研究[D]. 成都:西南石油大学, 2016. |
[24] | TAN Y R . Study on interwell connectivity in AD4 well area of Tahe fractured reservoir[D]. Chengdu: Southwest Petroleum University, 2016. |
/
〈 | 〉 |