Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 3: 126 - 134
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.03.020
Origin of shale fractures and its influence on gas-bearing properties: A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing
Received date: 2020-03-05
Online published: 2020-07-03
By the macro and micro comprehensive research methods of seismic-geological interpretation profile, integrated core, imaging log interpretation(FMI), thin sections authentication, and argon ion polishing scanning electron microscope, the characteristics, main controlling factors of the properties of the shale of Wufeng Formation-Longmaxi Formation in the Yangchungou structural belt of southeast Chongqing and their influence on shale gas-bearing properties are analyzed. The study shows that there are many fractures such as shear fractures, bedding fractures, slip fractures, cleavage fractures, and shrinkage fractures developing in the shale of Wufeng Formation-Longmaxi Formation in the Yangchungou structural belt. The integrated analysis shows that shale fractures and interlayer sliding fractures there are vertical with middle-high-angle, whereas shear fractures are horizontal with low-angle. Most of the fractures are formed in multiple stages resulting in fracture nets, creases, micro faults and other phenomena. The development and distribution of these fractures are controlled by the tectonic activity, shale mineral composition and mechanical properties, and development of bentonite. Tectonic geology is the external cause of fracture development. The Yangchungou structural belt presents a fault-folding fold structure and is affected by multi-stage tectonic movements. Shear fractures, reticulate fractures, complex fracture network belts, and crumple belts are very developed. Shale mineral composition and mechanical properties are the internal causes of fracture development, controlling the development of micro-fractures and bedding fractures, such as cleavage fractures, intergranular fractures and shrinkage fractures. The Poisson ratio in 1st Longshan member of Yangchungou area is relatively small, the Young’s modulus is large, and the brittleness index is high. All those are good for the formation of various cracks. The more frequently the porphyry in the shale layer is, the closer it is to the main slip surface between the Wufeng Formation and the Linxiang Formation, the more obvious the slip phenomenon is, and the more developed the interlayer slip fractures are. Although the natural fractures in the Yangchungou structural belt are very developed, the preservation conditions have not suffered serious damage, so the shale gas exploration potential is still good in the study area. Drilling revealed that the total gas content of the shale is equivalent to that of the adjacent area, and the total hydrocarbon measured by gas is better than that of the adjacent area. The proportion of free gas is also higher than that of the adjacent area. It indicates that the formation of local structural fractures has expanded the storage space of free gas in shale gas, which is beneficial to the rock gas accumulation.
Jun MA . Origin of shale fractures and its influence on gas-bearing properties: A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(3) : 126 -134 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.020
[1] | 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019,40(1):41-49. |
[1] | WANG H, HE Z L, ZHANG Y G, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil & Gas Geology, 2019,40(1):41-49. |
[2] | 王艿川, 赵靖舟, 丁文龙, 等. 渝东南地区龙马溪组页岩裂缝发育特征[J]. 天然气地球科学, 2015,26(4):760-770. |
[2] | WANG N C, ZHAO J Z, DING W L, et al. Development characteristics of shale fracture in Longmaxi fornation in southeasten Sichuan[J]. Nature Gas Geoscience, 2015,26(4):760-770. |
[3] | 刘尧文, 王进, 张梦吟, 等. 四川盆地涪陵地区五峰—龙马溪组页岩气层孔隙特征及对开发的启示[J]. 石油实验地质, 2018,40(1):44-50. |
[3] | LIU Y W, WANG J, ZHANG M Y, et al. Pore features of shale gas layer in Wufeng-Longmaxi formations in Fuling area of Sichuan Basin and the application to development[J]. Petroleum Geology & Experiment, 2018,40(1):44-50. |
[4] | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016,37(6):799-808. |
[4] | GUO X S, HU D F, WEI X F, et al. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016,37(6):799-808. |
[5] | 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36. |
[5] | GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36. |
[6] | 章新文, 李吉君, 卢双舫, 等. 构造变形对页岩孔隙结构及吸附性的影响[J]. 特种油气藏, 2018,25(3):31-36. |
[6] | ZHANG X W, LI J J, LU S F, et al. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 2018,25(3):31-36. |
[7] | 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017,39(2):147-153. |
[7] | WEI X F, LI Y P, WEI Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017,39(2):147-153. |
[8] | 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018,39(3):485-497. |
[8] | WANG C, ZHANG B Q, SHU Z G, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):485-497. |
[9] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018,38(12):1-14. |
[9] | HE X P, HE G S, GAO Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):1-14. |
[10] | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76. |
[10] | DONG D Z, SHI Z S, GUANG Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76. |
[11] | 刘安, 欧文佳, 黄惠兰, 等. 湘鄂西地区奥陶系—志留系滑脱层古流体对页岩气保存的意义[J]. 天然气工业, 2018,38(5):34-43. |
[11] | LIU A, OU W J, HUANG H L, et al. Significance of paleo-fluid in the Ordovician-Silurian detachment zone to the preservation of shale gas in western Hunan-Hubei area[J]. Natural Gas Industry, 2018,38(5):34-43. |
[12] | 何顺, 秦启荣, 周吉羚, 等. 川东南DS地区龙马溪组页岩裂缝发育特征及期次解析[J]. 地质科技情报, 2019,38(2):101-109. |
[12] | HE S, QIN Q R, ZHOU J L, et al. Shale fracture characteristics and its application of the Longmaxi formation in DS area, southeast Sichuan[J]. Geological Science and Technology Information, 2019,38(2):101-109. |
[13] | 岳锋, 李永臣, 赵宝山, 等. 重庆下古生界页岩顺层滑脱变形域的形成及其地质意义[J]. 石油与天然气地质, 2018,39(2):229-238. |
[13] | YUE F, LI Y C, ZHAO B S, et al. Bedding decollement deformation domain in the Lower Paleozoic shales in Chongqing: Formation and geological significance[J]. Oil & Gas Geology, 2018,39(2):229-238. |
[14] | 淮银超, 张铭, 谭玉涵, 等. 西加盆地泥盆系页岩气储层最优化测井解释[J]. 特种油气藏, 2019,26(1):24-29. |
[14] | HUAI Y C, ZHANG M, TAN Y H, et al. Optimized log interpretation of Devonian shale gas reservoir in western Canada Basin[J]. Special Oil & Gas Reservoirs, 2019,26(1):24-29. |
[15] | 孙德瑞, 赵谦平, 张丽霞, 等. 声电成像测井在鄂尔多斯盆地陆相页岩气中的应用[J]. 非常规油气, 2018,5(1):48-55. |
[15] | SUN D R, ZHAO Q P, ZHANG L X, et al. Acoustic and resistivity imaging well logging applied to continental shale gas in Ordos Basin[J]. Unconventional Oil & Gas, 2018,5(1):48-55. |
[16] | 唐永, 周立夫, 陈孔全, 等. 川东南构造应力场地质分析及构造变形成因机制讨论[J]. 地质论评, 2018,64(1):15-28. |
[16] | TANG Y, ZHOU L F, CHEN K Q, et al. Analysis of tectonic stress field of southeastern Sichuan and formation mechanism of tectonic deformation[J]. Geological Review, 2018,64(1):15-28. |
[17] | 魏祥峰, 赵正宝, 王庆波, 等. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价[J]. 地质论评, 2017,63(1):153-164. |
[17] | WEI X F, ZHAO Z B, WANG Q B, et al. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, Southeastern Sichuan[J]. Geological Review, 2017,63(1):153-164. |
[18] | 罗兵, 郁飞, 陈亚琳, 等. 四川盆地涪陵地区页岩气层构造特征与保存评价[J]. 石油实验地质, 2018,40(1):103-110. |
[18] | LUO B, YU F, CHEN Y L, et al. Structural features and preservation evaluation of shale gas reservoirs in the Fuling area,Sichuan Basin[J]. Petroleum geology & Experiment, 2018,40(1):103-110. |
[19] | 胡德高, 刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018,40(1):20-24. |
[19] | HU D G, LIU C. Geological factors of well fracability in Fuling shale gas field, Sichuan basin[J]. Petroleum geology & Experiment, 2018,40(1):20-24. |
[20] | 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018,39(4):631-640. |
[20] | WANG R Y, HU Z Q, LIU J S, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shale: A case study of the Lower Cambrian in Cengong area, northern Guizhou Province[J]. Oil & Gas Geology, 2018,39(4):631-640. |
[21] | 曲冠政, 周德胜, 彭娇, 等. 基于Lattice Boltzmann方法的页岩张性裂缝渗流特征研究[J]. 特种油气藏, 2018,25(1):134-139. |
[21] | QU G Z, ZHOU D S, PENG J, et al. Seepage characteristics of tension fractures in shale based on Lattice Boltzman Method[J]. Special Oil & Gas Reservoirs, 2018,25(1):134-139. |
[22] | 赵建华, 金振奎, 耿一凯, 等. 四川盆地龙马溪组富有机质页岩形成主控因素[J]. 大庆石油地质与开发, 2016,35(2):140-147. |
[22] | ZHAO J H, JIN Z K, GENG Y K, et al. Main diagenesis controlling factors for Longmaxi Formation organic matter rich shale in Sichuan Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2016,35(2):140-147. |
[23] | 岳喜伟, 戴俊生, 王珂. 岩石力学参数对裂缝发育程度的影响[J]. 地质力学学报, 2014,20(4):372-378. |
[23] | YUE X W, DAI J S, WANG K. Influence of rock mechanics parameters on development of fracture[J]. Journal of Geomechanics, 2014,20(4):372-378. |
[24] | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018,38(3):1-14. |
[24] | ZHAO J Z, REN L, SHEN C, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018,38(3):1-14. |
[25] | 胡华锋, 胡起, 林正良. 页岩气储层地层压力预测方法及其在四川盆地的应用[J]. 石油物探, 2018,57(3):362-368. |
[25] | HU H F, HU Q, LIN Z L. Pore pressure prediction for shale gas reservoirs and its application in the Sichuan Basin, China[J]. Geophysical Prospecting for Petroleum, 2018,57(3):362-368. |
[26] | 靳平平, 欧成华, 马中高, 等. 蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J]. 石油物探, 2018,57(3):344-355. |
[26] | JIN P P, OU C H, MA Z G, et al. Evolution of montmorillonite and its related clay minerals and their effects on shale gas development[J]. Geophysical Prospecting for Petroleum, 2018,57(3):344-355. |
[27] | 李丹, 欧成华, 马中高, 等. 黄铁矿与页岩的相互作用及其对页岩气富集与开发的意义[J]. 石油物探, 2018,57(3):332-343. |
[27] | LI D, OU C H, MA Z G, et al. Pyrite-shale interaction in shale gas enrichment and development[J]. Geophysical Prospecting for Petroleum, 2018,57(3):332-343. |
[28] | 王玉满, 李新景, 陈波, 等. 中上扬子地区埃隆阶最厚斑脱岩层分布特征及地质意义[J]. 天然气地球科学, 2018,29(1):42-54. |
[28] | WANG Y M, LI X J, CHEN B, et al. Distribution characteristics and geological significance of the thickest Aeronian bentonite bed in Middle Upper Yangtze Region[J]. Natural Gas Geoscience, 2018,29(1):42-54. |
[29] | 吴蓝宇, 陆永潮, 蒋恕, 等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发, 2018,45(5):806-816. |
[29] | WU L Y, LU Y C, JIANG S, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018,45(5):806-816. |
[30] | 刘莉, 包汉勇, 李凯, 等. 页岩储层含气性评价及影响因素分析——以涪陵页岩气田为例[J]. 石油实验地质, 2018,40(1):58-63. |
[30] | LIU L, BAO H Y, LI K, et al. Evaluation of gas content in shale reservoirs and analysis of influencing factors in Fuling shale gas field[J]. Petroleum Geology & Experiment, 2018,40(1):58-63. |
[31] | 李金磊, 尹成, 王明飞, 等. 四川盆地涪陵焦石坝地区保存条件差异性分析[J]. 石油实验地质, 2019,41(3):341-347. |
[31] | LI J L, YIN C, WANG M F, et al. Preservation condition differences in Jiaoshiba area, Fuling, Sichuan basin[J]. Petroleum Geology & Experiment, 2019,41(3):341-347. |
/
〈 | 〉 |