Methodological and Theory

Study on impact of particle size of CO2 foam system for flooding on its performance

  • Shuangxing LIU ,
  • Bo PENG ,
  • Qi LIU ,
  • Xingchun LI ,
  • Ming XUE
Expand
  • 1. China University of Petroleum(Beijing), Beijing 102249, China;
    2. CNPC Research Institute of Safety and Environment, Beijing 102206, China

Received date: 2020-02-07

  Online published: 2020-07-03

Abstract

CO2 is widely used as a displacement agent in oil displacement because of its unique physical properties and its chemical reaction with crude oil. But pure CO2 gas flooding is prone to gas channeling. So the application of CO2 in the foam flooding process make CO2 can not only play its own role in oil displacement, but also realize fluidity control and reduce the possibility of gas channeling. In this study, the stability, particle size change and percolation characteristics of CO2 foam with different particle sizes and the same chemical composition are experimentally studied, the change rule of the influence of particle size on foam performance is obtained, and the influence mode is analyzed and discussed. The results show that the smaller the bubble size, the better the stability of the foam system, the stronger the blocking ability, and the slower the particle size changes over time. Changing the preparation method to reduce the particle size of the foam system can effectively improve the foam’s stability and EOR capacity.

Cite this article

Shuangxing LIU , Bo PENG , Qi LIU , Xingchun LI , Ming XUE . Study on impact of particle size of CO2 foam system for flooding on its performance[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(3) : 33 -38 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.005

References

[1] 严巡, 刘让龙, 王长权, 等. 盐间油藏原油和CO2最小混相压力研究[J]. 非常规油气, 2019,6(5):54-56.
[1] YAN X, LIU R L, WANG C Q, et al. Investgation of the mininum miscibility of crude oil and CO2 in salt reservoir[J]. Unconventional Oil & Gas, 2019,6(5):54-56.
[2] 史胜龙, 王业飞, 周代余, 等. 微泡沫体系直径影响因素及微观稳定性[J]. 东北石油大学学报, 2016,40(1):103-110.
[2] SHI S L, WANG Y F, ZHOU D Y, et al. Bubble size influence factors and microscopic stability of microfoam system[J]. Journal of Northeast Petroleum University, 2016,40(1):103-110.
[3] 王琛, 李天太, 高辉, 等. CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理[J]. 油气地质与采收率, 2018,25(3):107-111.
[3] WANG C, LI T T, GAO H, et al. Study on influencing mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018,25(3):107-111.
[4] 王福顺, 牟珍宝, 刘鹏程, 等. 超稠油油藏CO2辅助开采作用机理实验与数值模拟研究[J]. 油气地质与采收率, 2017,24(6):86-91.
[4] WANG F S, MOU Z B, LIU P C, et al. Experiment and numerical simulation on mechanism of CO2 assisted mining in super heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):86-91.
[5] LI C X, WANG W C, WANG Z H. A surface tension model for liquid mixtures based on the Wilson equation[J]. Fluid Phase Equilibria, 2000,175(1-2):185-196.
[6] 孙琳, 赵凡琪, 张芸, 等. 高温高盐底水油藏氮气泡沫压锥实验研究[J]. 油气地质与采收率, 2017,24(6):97-102.
[6] SUN L, ZHAO F Q, ZHANG Y, et al. An experimental study of coning control with nitrogen foam in high-temperature and high-salinity bottom water reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):97-102.
[7] 普劳斯尼茨. 流体相平衡的分子热力学[M]. 北京: 化学工业出版社, 2006.
[7] PRAUSNITZ J M. Molecular thermodynamics of fluid-phase equilibria[M]. Beijing: Chemical Industry Press, 2006.
[8] 方洪波, 宗华, 李维峰, 等. 热力学不稳定体系的稳定性问题探讨[J]. 油田建设设计, 2001,50(1):4-8.
[8] FANG H B, ZONG H, LI W F, et al. Discussion of the Stability of thermodynamically unstable systems[J]. Journal of Oilfield Construction & Design, 2001,50(1):4-8.
[9] 赵燕, 吴光焕, 孙业恒. 泡沫辅助蒸汽驱矿场试验及效果[J]. 油气地质与采收率, 2017,24(5):106-110.
[9] ZHAO Y, WU G H, SUN Y H. Field test and effect analysis of foam-assisted steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2017,24(5):106-110.
[10] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002.
[10] GUO L J. Two-phase and multiphase flow mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 2002.
[11] XUE Z Q, YAMADA T, MATSUOKA T, et al. Carbon dioxide microbubble injection-Enhanced dissolution in geological sequestration[J]. Energy Procedia, 2011,4:4307-4313.
[12] KARAKASHEV S I, IVANOVA D S, ANGARSKA Z K, et al. Comparative validation of the analytical models for the Marangoni effect on foam film drainage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,365(1-3):122-136.
[13] OSEI BONSU K, SHOKRI N, GRASSIA P. Foam stability in the presence and absence of hydrocarbons: From bubble-to bulk-scale[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015,481:514-526.
[14] TAN S N, FORNASIERO D, SEDEV R, et al. Marangoni effects in aqueous polypropylene glycol foams[J]. Journal of colloid and interface science, 2005,286(2):719-729.
[15] TAKAHASHI M, KAWAMURA T, YAMAMOTO Y, et al. Effect of shrinking microbubble on gas hydrate formation[J]. Journal of Physical Chemistry, 2003,107(10):2171-2173.
[16] TAKAHASHI M. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface[J]. Journal of Physical Chemistry(B), 2005,109(46):58-64.
[17] 曲海莹, 刘琦, 彭勃, 等. 纳米颗粒对CO2泡沫体系稳定性的影响[J]. 油气地质与采收率, 2019,26(5):120-126.
[17] QU H Y, LIU Q, PENG B, et al. Effect of nanoparticle on stability of CO2 foam flooding system[J]. Petroleum Geology and Recovery Efficiency, 2019,26(5):120-126.
[18] KATAOKA H, NAGASAKA Y, HASEGAWA H. Electrical potential of microbubble generated by shear flow in pipe with slits[J]. Fluid Dynamics Research, 2008,40(7-8):554-564.
[19] KOIDE H, XUE Z Q. Carbon microbubbles sequestration: A novel technology for stable underground emplacement of greenhouse gases into wide variety of saline aquifers, fractured rocks and tight reservoirs[J]. Energy Procedia, 2009,1(1):3655-3662.
[20] 阮晓博, 杨芳, 顾宁. 微纳气泡制备及其应用于医学超声影像增强与药物载运的发展[J]. 东南大学学报(医学版), 2011,30(1):208-214.
[20] RUAN X B, YANG F, GU N. Preparation of micro-nano bubbles and their application in medical ultrasound image enhancement and drug transport[J]. Journal OF Southeast University(Medical Science Edition), 2011,30(1):208-214.
[21] 刘观军, 李小瑞, 丁里, 等. 微泡沫酸性清洁压裂液的制备及性能[J]. 精细化工, 2013,30(1):94-98.
[21] LIU G J, LI X R, DING L, et al. Synjournal of microfoam acid clean fracturing fluid and its properties[J]. Fine Chemicals, 2013,30(1):94-98.
[22] YAMABE H, NAKAOKA K, XUE Z Q, et al. Simulation study of CO2 micro-bubble generation through porous media[J]. Energy Procedia, 2013,37:4635-4646.
[23] 姜瑞忠, 张海涛, 张伟, 等. CO2驱三区复合油藏水平井压力动态分析[J]. 油气地质与采收率, 2018,25(6):63-70.
[23] JIANG R Z, ZHANG H T, ZHANG W, et al. Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):63-70.
[24] 祝浪涛, 廖新维, 陈志明, 等. 应力敏感性低渗透油藏CO2混相驱试井模型[J]. 油气地质与采收率, 2017,24(4):88-93.
[24] ZHU L T, LIAO X W, CHENG Z M, et al. Well test model of CO2 miscible flooding in the low-permeability reservoirs with stress sensitivity[J]. Petroleum Geology and Recovery Efficiency, 2017,24(4):88-93.
[25] 曾嘉. 二元泡沫体系在含油多孔介质中的渗流特征研究[J]. 长江大学学报(自然科学版), 2015,12(5):24-26.
[25] ZENG J. Seepage characteristics of binary foam system in porous media containing oil[J]. Journal of Yangtze University(Natural Science Edition), 2015,12(5):24-26.
[26] 史胜龙, 王业飞, 周代余. 微泡沫体系的制备及在调剖、驱油中的应用进展[J]. 油田化学, 2016,34(4):750-755.
[26] SHI S L, WANG Y F, ZHOU D Y. Preparation methods and research progress of microbubble in flooding and profile control[J]. Oilfield Chemistry, 2016,34(4):750-755.
[27] GROWCOCK F B, KHAN A K, SIMON G A. Application of water-based and oil-based aphrons in drilling fluids[C]// paper SPE-80208-MS presented at the International Symposium on Oilfield Chemistry, 5-7 February 2003, Houston, Texas, USA.
[28] 耿向飞, 胡星琪, 吉永忠, 等. 可循环微泡沫钻井液的微泡粒径影响因素研究[J]. 油田化学, 2013,30(4):505-508.
[28] GENG X F, HU X Q, JI Y Z, et al. Effect factors of microbubble size in recirculated micro-foam drilling fluid[J]. Oilfield Chemistry, 2013,30(4):505-508.
Outlines

/