Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 3: 86 - 91
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.03.013
Preliminary evaluation for corrosion resistance of non-metallic pipes by CO2 flooding
Received date: 2020-02-13
Online published: 2020-07-03
In the CO2 flooding environment, puncture occurs frequently in the gathering and transportation pipeline network composed of carbon steel pipelines. So it is of great significance to reduce corrosion and maintenance costs by using reinforced plastic non-metallic pipes instead of some metal pipes. Corrosion immersion experiments are conducted to study the changes of permeability, expansion and mechanical properties of swelling and mechanical properties of flexible composite pipes and aramid glass steel pipes under high salinity and CO2 content with immersion periods. The results show that as the immersion periods increases, the permeability and expansion rate of the two non-metallic materials increase, but the tensile strength decreases. Among them, aramid glass steel pipe has higher permeability, relatively smaller expansion rate, and higher tensile strength. The flexible composite pipe has the smaller permeability, a relatively larger expansion rate, and the smaller tensile strength. After the strength check relay on the changed mechanical properties, both materials can meet the gathering and transportation pressure requirements of 3 MPa. Based on the experimental results, the maximum allowable pressure for different pipeline specifications is calculated.
San HE , Sulin XIANG , Xingyu XIA , Yinjuan SUN , Jianjun BAI , Junyi HE , Feiran LI , Xi YANG , Yunpeng QIU . Preliminary evaluation for corrosion resistance of non-metallic pipes by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(3) : 86 -91 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.013
[1] | HE S, QIU Y, SUN Y, et al. Corrosion behavior Of AISI 1020 steel in MEA and [BMIm] BF4 mixed solution containing saturated CO2[J]. International Journal of Greenhouse Gas Control, 2020,94(3):29-31. |
[2] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020,27(1):20-28. |
[2] | QIN J S, LI Y L, WU D B, CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):20-28. |
[3] | 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020,27(1):1-10. |
[3] | LI Y. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):1-10. |
[4] | 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019,6(1):107-114. |
[4] | JIA K F, JI D C, GAO J D, et al. The exisiting state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019,6(1):107-114. |
[5] | 王世璐, 王玉霞, 贾凯锋. 低渗透油藏岩心注CO2驱油效率物理模拟[J]. 非常规油气, 2019,6(2):85-90. |
[5] | WANG S L, WANG Y X, JIA K F. Physical simulation of CO2 flooding efficiency in low permeability reservoir core[J]. Unconventional Oil & Gas, 2019,6(2):85-90. |
[6] | 李渭亮, 张慧娟, 杜春朝, 等. CO2渗入对C110管柱在甲酸盐完井液中腐蚀行为的影响[J]. 材料保护, 2018,51(10):47-49. |
[6] | LI W L, ZHANG H J, DU C C, et al. Effect of CO2 on the corrosion behavior of C110 carbon steel in formate solution environment[J]. Materials Protection, 2018,51(10):47-49. |
[7] | 刘博, 任呈强, 贺三, 等. 20钢和L245NS钢在CO2驱油反排水中的腐蚀行为[J]. 腐蚀与防护, 2018,39(6):418-424. |
[7] | LIU B, REN C Q, HE S, et al. Corrosion behavior of carbon steels 20 steel and L245NS in CO2 enhanced oil recovery[J]. Corrosion & Protection, 2018,39(6):418-424. |
[8] | 孙银娟, 王潜忠, 张志浩, 等. 316L不锈钢在模拟含二氧化碳原油中的耐腐蚀性能[J]. 油气储运, 2020,39(1):86-91. |
[8] | SUN Y J, WANG Q Z, ZHANG Z H, et al. Corrosion resistance of 316L stainless steel in simulated CO2-bearing crude oil[J]. Oil & Gas Storage and Transportation, 2020,39(1):86-91. |
[9] | 贺三, 高超洋, 张岭. MEA捕集CO2腐蚀研究进展[J]. 腐蚀科学与防护技术, 2018,30(4):454-458. |
[9] | HE S, GAO C Y, ZHANG L. Research progress on corrosion of carbon steel during process of capture CO2 with monoethanolamine solution[J]. Corrosion Science and Protection Technology, 2018,30(4):454-458. |
[10] | 贺三, 姜锦涛, 袁宗明. Cl-对CO2环境下的碳钢腐蚀影响[J]. 全面腐蚀控制, 2012,26(6):36-38. |
[10] | HE S, JIANG J T, YUAN Z M. Effects of Cl- content on CO2 corrosion of carbon steel[J]. Total Corrosion Control, 2012,26(6):36-38. |
[11] | 周伟强, 李旭光, 熊培祺. 渤海油田常用套管CO2腐蚀室内研究[J]. 石油地质与工程, 2017,31(3):124-126. |
[11] | ZHOU W Q, LI X G, XIONG P Q. Laboratory CO2 corrosion study of common casing in Bohai oilfield[J]. Petroleum Geology & Engineering, 2017,31(3):124-126. |
[12] | 葛扬志, 韩国进, 边江, 等. 基于WG-ICDA的管道CO2腐蚀预测模型改进[J]. 石油地质与工程, 2018,32(3):114-117. |
[12] | GE Y Z, HAN G J, BIAN J, et al. Improvement of the prediction model of pipeline CO2 corrosion based on WG-ICDA[J]. Petroleum Geology & Engineering, 2018,32(3):114-117. |
[13] | 黄天杰, 殷安会, 刘智勇, 等. 吉林油田矿场条件下CO2腐蚀模拟装置的建立及实验研究[J]. 表面技术, 2015,44(3):69-73. |
[13] | HUANG T J, YIN A H, LIU Z Y, et al. Setup of CO2 corrosion simulation unit and test study under field site conditions in Jilin Oilfield[J]. Surface Technology, 2015,44(3):69-73. |
[14] | 张绍辉, 王凯, 王玲, 等. CO2驱注采工艺的应用与发展[J]. 石油钻采工艺, 2016,38(6):869-875. |
[14] | ZHANG S H, WANG K, WANG L, et al. Development and application of CO2 flooding[J]. Petroleum Drilling & Production Technology, 2016,38(6):869-875. |
[15] | 李凯, 张贤波, 李康锐, 等. 柔性复合管在油田集输管线的应用[J]. 石油工业技术监督, 2013,29(4):13-14. |
[15] | LI K, ZHANG X B, LI K R, et al. Application of the flexible composite pipe in the oilfield gathering and transporting pipeline[J]. Technical Supervision in Petroleum Industry, 2013,29(4):13-14. |
[16] | 陆企亭, 刘雨坤, 袁明, 等. J-39室温快速固化胶粘剂[J]. 粘接, 1981,2(1):45-48. |
[16] | LU Q T, LIU Y K, YUAN M, et al. J-39 Rapid curing adhesive at room temperature[J]. Adhesion, 1981,2(1):45-48. |
[17] | 李厚补, 李鹤林, 戚东涛, 等. 油田集输管网用非金属管存在问题分析及建议[J]. 石油仪器, 2014,28(6):4-8. |
[17] | LI H B, LI H L, QI D T, et al. Analysis on non-metallic pipes used for oil and gas gathering and transportation[J]. Petroleum Instruments, 2014,28(6):4-8. |
[18] | 周立娜. 玻璃钢在CO2环境中的腐蚀行为及其性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012. |
[18] | ZHOU L N. Corrosion behavior and performance of FRP in CO2 environment[D]. Harbin: Harbin Institute of Technology, 2012. |
[19] | 国家合成树脂质量监督检验中心. 塑料耐液体化学试剂性能的测定:GB/T11547-2008[S]. 北京: 中国标准出版社, 2008. |
[19] | National Synthetic Resin Quality Supervision and Inspection Center. Determination of the resistance of plastics to liquid chemical reagents: GB/T 11547—2008[S]. Beijing: China Standard Press, 2008. |
[20] | 全国纤维增强塑料标准化技术委员会. 玻璃纤维增强热固性塑料耐化学介质性能实验方法:GB/T3857-2017[S]. 北京: 中国标准出版社, 2017. |
[20] | National Fiber Reinforced Plastics Standardization Technical Committee. Experimental method of chemical resistance of glass fiber reinforced thermosetting plastics: GB/T 3857—2017[S]. Beijing: China Standard Press, 2017. |
[21] | 全国塑料标准化技术委员会. 模塑和挤塑塑料的实验条件GB/T1040.2-2006[S]. 北京: 中国标准出版社, 2006. |
[21] | National Plastics Standardization Technical Committee. Determination of tensile properties of plastics. Part 2: Experimental conditions for molded and extruded plastics: GB/T 1040.2—2006[S]. Beijing: China Standard Press, 2006. |
[22] | 全国塑料标准化技术委员会. 各向同性和正交各向异性纤维增强复合材料的实验方法:GB/T1040.4-2006[S]. 北京: 中国标准出版社, 2006. |
[22] | National Plastics Standardization Technical Committee. Determination of tensile properties of plastics. Part 4: Experimental methods of isotropic and orthotropic fiber reinforced composites: GB/T 1040.4—2006[S]. Beijing: China Standard Press, 2006. |
[23] | 张建强. 热塑性塑料管材在油气田腐蚀介质中性能退化规律研究[D]. 西安:西安石油大学, 2015. |
[23] | ZHANG J Q. Performance degradation of thermoplastic pipes in corrosive media of oil and gas fields[D]. Xi’an: Xi’an Shiyou University, 2015. |
/
〈 | 〉 |