CBM Geology

Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures

  • Dongmin MA ,
  • Zheng GAO ,
  • Yue CHEN ,
  • Hui ZHANG ,
  • Kai SHAO ,
  • Zhicang ZHANG ,
  • Xun WU ,
  • Fu YANG
Expand
  • 1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
    2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an, Shaanxi 710021, China
    3. Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
    4. Shaanxi Coalbed Methane Development and Utilization Co., Ltd., Xi’an, Shaanxi 710119, China

Received date: 2019-12-31

  Online published: 2020-08-07

Abstract

In order to study the difference in adsorption/desorption characteristics and the desorption hysteresis of CH4 in different coal ranks, low, medium, and high coal rank samples are collected for the experiments of micro-component determination, liquid nitrogen adsorption, and isothermal adsorption/desorption to systematically analyze the composition, pore structure, differences in adsorption/desorption characteristics and desorption hysteresis effects of different coal rank sample materials. Combined with the calculation results of methane adsorption heat, the mechanism of coalbed methane desorption hysteresis from the energy perspective is discussed. The results show that: ①The reflectance Ro,max of the vitrinite group of coal samples are 0.43 %, 1.26 %, and 3.27 %, respectively. Low-rank coal samples have low vitrinite group content, high inert matter group content, high volatile content and fixed carbon. Medium-rank and high-rank samples are reversed. The degree of coal metamorphism increases. Porosity, BET specific surface area, BJH total pore volume, and fractal dimension D2 change in a “V” shape, and D1 changes in an inverted “V” shape. ②Under isothermal condition, the residual adsorption amount becomes larger as the coal rank rises, and the desorption becomes more difficult. As the temperature rises, the residual adsorption capacity increases first and then decreases. With 40 ℃ as the inflection point, the temperature influences both the degree of activation of gas molecules and the pore structure of coal. ③When the pressure is the same, the higher the coal rank, the faster the methane adsorption rate at the low-pressure stage(p<4 MPa), the adsorption capacity increases rapidly at the high-pressure stage(p>4 MPa), and the adsorption capacity does not increase significantly. ④For the three coal samples, DFS4 #, SGZ11 #, and SH3 #, in the desorption process, their isosteric heat of adsorption are all greater than that in the adsorption process, indicating that the desorption process needs to continuously absorb heat from outside. Therefore, the methane in the adsorption state needs to absorb energy from the external environment, and the energy difference between the adsorption and desorption processes will cause desorption hysteresis. The methane in the free state enters into the micropores due to high pressure, resulting in the expansion and deformation of coal matrix, changes in pore structure, limit of methane desorption, and finally a desorption hysteresis effect.

Cite this article

Dongmin MA , Zheng GAO , Yue CHEN , Hui ZHANG , Kai SHAO , Zhicang ZHANG , Xun WU , Fu YANG . Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(4) : 17 -24 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.003

References

[1] 穆福元, 王红岩, 吴京桐 , 等. 中国煤层气开发实践与建议[J]. 天然气工业, 2018,38(9):55-60.
[1] MU F Y, WANG H Y, WU J T , et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry, 2018,38(9):55-60.
[2] 乔军伟 . 低阶煤孔隙特征与解吸规律研究[D]. 西安:西安科技大学, 2009.
[2] QIAO J W . Research on low rank coal of pore characteristics and desorption rules[D]. Xi’an: Xi’an University of Science and Technology, 2009.
[3] LI P, MA D M, ZHANG J C , et al. Wettability modification and its influence on methane adsorption/desorption: A case study in the Ordos Basin, China[J]. Energy Science & Engineering, 2020,8(3):804-816.
[4] 蔺亚兵 . 煤层气解吸滞后效应研究[D]. 西安:西安科技大学, 2012.
[4] LIN Y B . Study on coalbed methane desorption hysteresis effect[D]. Xi’an: Xi’an University of Science and Technology, 2012.
[5] 杨兆中, 徐鸿涛, 付嫱 , 等. 基于分子模拟的煤层CH4解吸规律研究[J]. 油气藏评价与开发, 2016,6(5):67-71.
[5] YANG Z Z, XU H T, FU Q , et al. CH4 desorption rule in coalbed based on molecule simulation[J]. Reservoir Evaluation and Development, 2016,6(5):67-71
[6] 马东民, 张遂安, 王鹏刚 , 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011,39(1):20-24.
[6] MA D M, ZHANG S A, WANG P G , et al. Mechanism of coalbed methane desorption at different temperatures[J]. Coal Geology & Exploration, 2011,39(1):20-24.
[7] 严敏, 龙航, 白杨 , 等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保. 2019,46(3):6-10.
[7] YAN M, LONG H, BAI Y , et al. Experimental study on the effect of temperature effect on coal seam gas adsorption and desorption[J]. Mining Safety & Environmental Protection, 2019,46(3):6-10.
[8] 王公达, REN T X, 齐庆新 , 等. 吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报, 2016,41(1):49-56.
[8] WANG G D, REN T G, QI Q X , et al. Mechanism of adsorption-desorption hysteresis and its influence on deep CBM recovery[J]. Journal of China Coal Society, 2016,41(1):49-56.
[9] 张遂安, 叶建平, 唐书恒 , 等. 煤对甲烷气体吸附-解吸机理的可逆性实验研究[J]. 天然气工业. 2005,25(1):44-46.
[9] ZHANG S A, YE J P, TANG S H , et al. Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility experimental study[J]. Natural Gas Industry, 2005,25(1):44-46.
[10] 马东民, 马薇, 蔺亚兵 . 煤层气解吸滞后特征分析[J]. 煤炭学报, 2012,37(11):1885-1889.
[10] MA D M, MA W, LIN Y B . Desorption hysteresis characteristics of CBM[J]. Journal of China Coal Society, 2012,37(11):1885-1889.
[11] 李沛, 马东民, 张辉 , 等. 高、低阶煤润湿性对甲烷吸附/解吸的影响[J]. 煤田地质与勘探, 2016,44(5):80-85.
[11] LI P, MA D M, ZHANG H , et al. Influence of high and low rank coal wettability and methane adsorption/desorption characteristics[J]. Coal Geology & Exploration, 2016,44(5):80-85.
[12] 张慧杰, 张浪, 汪东 , 等. 煤变质程度对瓦斯吸附能力的控制作用[J]. 煤矿安全, 2017,48(7):5-8.
[12] ZHANG H J, ZHANG L, WANG D , et al. Control effect of metamorphic grade of coal on gas adsorption capacity[J]. Safety in Coal Mines, 2017,48(7):5-8.
[13] 李子文, 郝志勇, 庞源 , 等. 煤的分形维数及其对瓦斯吸附的影响[J]. 煤炭学报, 2015,40(4):863-869.
[13] LI Z W, HAO Z Y, PANG Y , et al. Fractal dimensions of coal and their influence on methane adsorption[J]. Journal of China Coal Society, 2015,40(4):863-869.
[14] 马东民, 张遂安, 蔺亚兵 . 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011,36(3):477-480.
[14] MA D M, ZHANG S A, LIN Y B . Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J]. Journal of China Coal Society, 2011,36(3):477-480.
[15] 高晨, 鄢晓忠, 许龙泉 . 富氧条件下温度对煤焦结构中官能团和孔隙结构变化影响的实验研究[J]. 煤炭技术, 2018,37(7):301-304.
[15] GAO C, YAN X Z, XU L Q . Experimental study on effect of temperature on change of functional groups and pore structure in coal char structure under oxygen-enriched condition[J]. Coal Technology, 2018,37(7):301-304.
[16] 李希建, 尹鑫, 李维维 , 等. 页岩对甲烷高温高压等温吸附的热力学特性[J]. 煤炭学报, 2018,43(S1):229-235.
[16] LI X J, YIN X, LI W W , et al. Thermodynamic characteristics of isothermal adsorption of methane at high temperature and pressure in shale[J]. Journal of China Coal Society, 2018,43(S1):229-235.
[17] 马东民, 李沛, 张辉 , 等. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017,28(6):852-862.
[17] MA D M, LI P, ZHANG H , et al. Comparison on characteristics of adsorption/desorption of vitrain and durain in long-flame coal[J]. Natural Gas Geoscience, 2017,28(6):852-862.
[18] SONG W, YAO J, MA J , et al. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems[J]. Fuel, 2018,215:196-203.
[19] 傅学海, 秦勇, 韦重韬 . 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
[19] FU X H, QIN Y, WEI C T. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[20] XIN F, XU H, TANG D , et al. Pore structure evolution of low-rank coal in China[J]. International Journal of Coal Geology, 2019,205:126-139.
[21] 徐海飞 . 河南省中高煤级构造煤吸附/解吸特征研究[D]. 焦作:河南理工大学, 2015.
[21] XU H F . Study on characteristics of adsorption/desorption of medium and high rank tectonically deformed coals in Henan province[D]. Jiaozuo: Henan University of Science and Technology, 2015.
[22] 林海飞, 卜婧婷, 严敏 , 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报, 2019,39(1):1-8.
[22] LIN H F, BU J T, YAN M , et al. Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method[J]. Journal of Xi’an University of Science and Technology, 2019,39(1):1-8.
[23] 解北京, 王广宇, 严正 . 粉煤吸附甲烷温度变化规律试验研究[J]. 煤炭科学技术, 2019,47(8):123-128.
[23] XIE B J, WANG G Y, YAN Z . Experimental study on temperature change law of pulverized coal during adsorbing methane[J]. Coal Science and Technology, 2019,47(8):123-128.
[24] 杨涛, 聂百胜 . 煤粒吸附瓦斯过程中的温度变化研究[J]. 煤炭学报, 2015,40(S2):380-385.
[24] YANG T, NIE B S . Temperature variation tests during the gas adsorption process[J]. Journal of China Coal Society, 2015,40(S2):380-385.
[25] 安江飞 . 煤样吸附/解吸过程中表面各点温度变化特征研究[D]. 太原:太原理工大学, 2017.
[25] AN J F . Study on temperature variation characteristics in adsorption and desorption at different points on coal sample surface[D]. Taiyuan: Taiyuan University of Technology, 2017.
Outlines

/