Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 4: 39 - 44
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.04.006
Physical simulation of proppant transportation in artificial fractures of coal seam
Received date: 2019-10-22
Online published: 2020-08-07
In order to explore the influence of proppant settlement on the laying form of sand in coal seam cracks, the physical simulation is used to study the rules of proppant settlement and migration based on the previous researches. The visual physical simulation device of proppant transportation can directly and conveniently simulate the proppant placement in the fractures. Fully considering the in-site fracturing construction and the similarity of Reynolds number, the experiment for the influence of single factor change on the sand laying form of proppant is designed. The equilibrium height and time are used as the characterization parameters. In the early stage, the proppant settlement and migration rules of different pump injection displacement, sand ratio and proppant particle sizes are quantitatively analyzed by single crack. In the later stage, a branch crack is added to analyze the rules of proppant settlement and migration in the main crack and branch crack under the condition of different particle sizes of proppant. The results show that the smaller the pump displacement is, the higher the equilibrium height of sand dike will be if the sand ratio and particle size are larger and larger, and the longer the equilibrium time will be if the sand ratio and particle size are smaller and smaller; the distribution rule of branch crack is similar to that of main crack, the equilibrium height is lower than that of main fracture, and the equilibrium time is longer.
Key words: coal seam; cracks; proppant; law of settlement and migration; physical simulation
Xiaogang LI , Dongkun SHU , Ping ZHANG , Zhaozhong YANG . Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(4) : 39 -44 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.006
[1] | 门相勇, 韩征, 宫厚健 , 等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业, 2018,38(9):10-16. |
[1] | MEN X Y, HAN Z, GONG H J , et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry, 2018,38(9):10-16. |
[2] | 朱庆忠, 杨延辉, 左银卿 , 等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业, 2018,38(4):96-100. |
[2] | ZHU Q Z, YANG Y H, ZUO Y Q , et al. CBM development in China: Challenges and solutions[J]. Natural Gas Industry, 2018,38(4):96-100. |
[3] | 吴信波, 王谦, 张俊 . 彬长矿区煤层气井水力压裂效果影响因素分析[J]. 非常规油气, 2017,4(6):100-104. |
[3] | WU X B, WANG Q, ZHANG J . Analysis on influencing factors of hydraulic fracturing effect of coalbed methane wells in binchang mining area[J]. Unconventional Oil & Gas, 2017,4(6):100-104. |
[4] | 田守嶒, 黄中伟, 李根生 , 等. 径向井复合脉动水力压裂煤层气储层解堵和增产室内实验[J]. 天然气工业, 2018,38(9):88-94. |
[4] | TIAN S C, HUANG Z W, LI G S , et al. Laboratory experiments on blockage removing and stimulation of CBM reservoirs by composite pulsating fracturing of radial horizontal wells[J]. Natural Gas Industry, 2018,38(9):88-94. |
[5] | WITHDRAWN B G, IMQAM A . Proppant transport using high viscosity friction reducer fluids: Part I- rheology and static settling velocity characterization[J/OL]. ( 2019-11-28)[2019-12-20]. https://www.sciencedirect.com/science/article/pii/S0920410519311660. |
[6] | 杨尚谕, 杨秀娟, 闫相祯 , 等. 煤层气水力压裂缝内变密度支撑剂运移规律[J]. 煤炭学报, 2014,39(12):2459-2465. |
[6] | YANG S Y, YANG X J, YAN X Z , et al. Variable density proppant placement in CBM wells fractures[J]. Journal of China Coal Society, 2014,39(12):2459-2465. |
[7] | 周德胜, 张争, 惠峰 , 等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺, 2017,39(4):499-508. |
[7] | ZHOU D S, ZHANG Z, HUI F , et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017,39(4):499-508. |
[8] | TONG S Y, SINGH R, MOHANTY K K , et al. Proppant transport in fractures with foam-based fracturing fluids[C]// paper SPE-187376-MS presented at the SPE Annual Technical Conference and Exhibition, 9-11 October 2017, San Antonio, Texas, USA. |
[9] | LI N Y, LI J, ZHAO L Q , et al. Laboratory testing on proppant transport in complex-fracture systems[J]. SPE Production & Operations, 2017,32(4):382-391. |
[10] | 梁莹, 罗斌, 黄霞 . 水力压裂低密度支撑剂铺置规律研究及应用[J]. 钻井液与完井液, 2018,35(3):110-113. |
[10] | LIANG Y, LUO B, HUANG X . Study on distribution of low density proppants in hydraulic fracturing operations and the application thereof[J]. Drilling Fluid & Completion Fluid, 2018,35(3):110-113. |
[11] | 吴春方, 刘建坤, 蒋廷学 , 等. 压裂输砂与返排一体化物理模拟实验研究[J]. 特种油气藏, 2019,26(1):141-146. |
[11] | WU C F, LIU J K, JIANG T X , et al. Integrated physical modeling experiment research on sand transport and backflow in fracturing[J]. Special Oil & Gas Reservoirs, 2019,26(1):144-149. |
[12] | 温庆志, 翟恒立, 罗明良 , 等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率, 2012,19(6):104-107. |
[12] | WEN Q Z, ZHAI H L, LUO M L , et al. Study on proppant settlement and transport rule in shale gas fracturing[J]. Petroleum Geology and Recovery Efficiency, 2012,19(6):104-107. |
[13] | 徐鸿涛 . 煤层气井压裂后煤粉的运移规律研究[D]. 成都:西南石油大学, 2016. |
[13] | XU H T . Study on the migration rule of pulverized coal after fracturing of coalbed methane[D]. Chengdu: Southwest Petroleum University, 2016. |
[14] | 刘春亭, 李明忠, 郝丽华 , 等. 水力裂缝内支撑剂输送沉降行为数值仿真[J]. 大庆石油地质与开发, 2018,37(5):86-93. |
[14] | LIU C T, LI M Z, HAO L H , et al. Numerical simulation of the proppant transportation and setting in the hydraulic fracture[J]. Petroleum Geology & Oilfield Development in Daqing, 2018,37(5):86-93. |
[15] | 郭宇朦, 雷贤良, 李会雄 , 等. 页岩气多裂缝通道中的沉降特性研究[J]. 计算机仿真, 2016,33(1):116-121. |
[15] | GUO Y M, LEI X L, LI H X , et al. The study on the transport and deposition characteristics of shale gas in multi-fracture channels[J]. Computer Simulation, 2016,33(1):116-121. |
[16] | 李凌川, 张永春, 李月丽 . 脉冲加砂压裂支撑剂铺置状态的CFD模拟[J]. 长江大学学报, 2017,14(19):90-96. |
[16] | LI L C, ZHANG Y C, LI Y L . CFD simulation of proppant placement for impulse sand fracturing[J]. Journal of Yangtze University, 2017,14(19):90-96. |
[17] | 张涛, 郭建春, 刘伟 . 清水压裂中支撑剂输送沉降行为的CFD模拟[J]. 西南石油大学学报(自然科学版), 2014,36(1):74-82. |
[17] | ZHANG T, GUO J C, LIU W . CFD Simulation of Proppant Transportation and Settling in Water Fracture Treatments[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(1):74-82. |
[18] | 温庆志, 高金剑, 刘华 , 等. 滑溜水携砂性能动态实验[J]. 石油钻采工艺, 2015,37(2):97-100. |
[18] | WEN Q Z, GAO J J, LIU H , et al. Dynamic experiment on slick-water prop-carrying capacity[J]. Oil Drilling & Production Technology, 2015,37(2):97-100. |
[19] | 田守嶒, 盛茂, 刘习雄 . 近封隔器环空支撑剂沉降运移规律试验研究[J]. 石油机械, 2018,46(8):86-91. |
[19] | TIAN S Y, SHENG M, LIU X X . Experimental study on settlement and migration law of proppant in annulus near packer[J] China Petroleum Machinery, 2018,46(8):86-91. |
[20] | 刘俊辰, 彭欢, 高新平 , 等. 体积压裂支撑剂缝内沉降规律实验研究[J]. 钻采工艺, 2019,26(5):39-42. |
[20] | LIU J C, PENG H, GAO X P , et al. Experimental study on proppant settlement regularity in fracture during volume fracturing[J]. Drilling & Production Technology, 2019,26(5):39-42. |
[21] | 马立华, 袁旭, 冯建设 . 支撑剂沉降铺置规律机理及方法浅析[J]. 石化技术, 2019,26(2):219. |
[21] | MA L H, YUAN X, FENG J S . Analysis of mechanism and method of proppant settlement and placement[J]. Petrochemical Industry Technology, 2019,26(2):219. |
[22] | 侯腾飞, 张士诚, 马新仿 , 等. 支撑剂沉降规律对页岩气压裂水平井产能的影响[J]. 石油钻采工艺, 2017,39(5):638-645. |
[22] | HOU T F, ZHANG S C, MA X F , et al. Effect of proppant settlement laws on the productivity of shale-gas horizontal wells after the fracturing[J]. Oil Drilling & Production Technology, 2017,39(5):638-645. |
[23] | 张林强 . 支撑剂在滑溜水中沉降规律探讨[J]. 当代化工, 2017,46(4):711-714. |
[23] | ZHANG L Q . Discussion on the sedimentation law of proppant in slippery water[J]. Contemporary Chemical Industry, 2017,46(4):711-714. |
[24] | 万红碧, 李天柱 . 压裂裂缝内支撑剂沉降及运移规律研究现状与展望[J]. 当代化工, 2019,48(8):1775-1778. |
[24] | WAN H B, LI T Z . Research status and prospect of deposition and migration of propellant in shale pneumatic fracture[J]. Contemporary Chemical Industry, 2019,48(8):1775-1778. |
[25] | 王欣 . 支撑剂在裂缝中沉降的影响因素分析[J]. 石化技术, 2017,24(3):292. |
[25] | WANG X . Analysis of factors affecting the settlement of proppant in fractures[J]. Petrochemical Industry Technology, 2017,24(3):292. |
[26] | JEFFREY R G, BRYNES R P, LYNCH P J , et al. An analysis of hydraulic fracture and mineback data for a treatment in the German creek coal seam[C]// paper SPE-24362-MS presented at the SPE Rocky Mountain Regional Meeting, 18-21 May, Casper, Wyoming, USA. |
/
〈 | 〉 |