Engineering Process

Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis

  • Zhaozhong YANG ,
  • Junya XIONG ,
  • Jun LIU ,
  • Chao MIN ,
  • Xiaogang LI ,
  • Chenxi YANG
Expand
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2019-12-04

  Online published: 2020-08-07

Abstract

The effect of CBM wells fracturing is controlled by multiple factors including geological characteristics of coal reservoir and data of hydraulic fracturing technology, therefore, it’s important to analyze the significance of each factor and determine the main controlling factors affecting the fracturing effect of CBM wells. With reference to the fracturing data from a CBM gas field in China, Apriori association analysis is employed to track the main controlling factors, and in combination of grey correlation method, a new set of identification methods of these factors for the effect of fracturing measures has been put forward. Meanwhile, it is figured out that eight main controlling factors affecting the fracturing effects are in the order as follows: maximum operation displacement of fracturing>average sand ratio>gas saturation>gas content>total proppant volume>total fracturing fluid volume>sand carrying fluid volume>prepad fracturing volume. Based on this method, different main control factors can be adjusted preferentially with reference to the degree of correlation in fracturing design to control fracturing effect, so as to provide theoretical basis for field application.

Cite this article

Zhaozhong YANG , Junya XIONG , Jun LIU , Chao MIN , Xiaogang LI , Chenxi YANG . Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(4) : 63 -69 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.010

References

[1] 尹锦涛, 孙建博, 刘刚 , 等. 煤层气储层渗透率动态变化规律研究综述[J]. 非常规油气, 2017,4(2):114.
[1] YIN J T, SUN J B, LIU G , et al. Literature review of permeability dynamic change law in CBM reservoir[J]. Unconventional Oil & Gas, 2017,4(2):114.
[2] 崔春兰, 董振国, 吴德山 . 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019,30(5):626-634.
[2] CUI C L, DONG Z G, WU D S . Rock mechanics study and fracability evaluation for Longmaxi Formation of Baojing block in Hunan Province[J]. Natural Gas Geoscience, 2019,30(5):626-634.
[3] 冯帆, 何亮 . 基于层次分析法(AHP)的煤层气区块产能潜力分区——以山西柿庄镇北区块3^#煤为例[J]. 中国煤炭地质, 2018,30(6):51-54.
[3] FENG F, HE L . CBM block capacity potential partitioning based on AHP—a case ctudy of coal No.3 in Shizhuang north Block, Shanxi[J]. China Coal Geology, 2018,30(6):43-45.
[4] 杨显成, 蒋有录, 杨昕睿 , 等. 煤层气含量的主控因素——以卡拉哈里盆地XX区块为例[J]. 油气地质与采收率, 2018,25(1):56-60.
[4] YANG X C, JIANG Y L, YANG X R , et al. Study on main controlling factors of the coalbed methane content: A case study of Block XX in Kgalahari Basin[J]. Petroleum Geology and Recovery Efficiency, 2018,25(1):56-60.
[5] 王维旭, 贺满江, 王希友 , 等. 筠连区块煤层气产能主控因素分析及综合评价[J]. 煤炭科学技术, 2017,45(9):194-200.
[5] WANG W X, HE M J, WANG X Y , et al. Analysis on main controlling factors and comprehensive evaluation of coalbed methane production capacity of Junlian Block[J]. Coal Science and Technology, 2017,45(9):194-200.
[6] LU S S, CHEN H, PENG Z G , et al. Coalbed methane productivity differences and gas recovery in Qinshui Basin[J]. Journal of Liaoning Technical University(Natural Science), 2013,32(6):721-724.
[7] 刘佳 . 煤层气产能影响因素分析及常用的预测技术[J]. 国外测井技术, 2015,30(2):15-18.
[7] LIU J . Analysis of the influencing factors and the common forecasting techniques of coal-bed gas capacity[J]. World Well Logging Technology, 2015,20(2):15-18.
[8] 罗金辉, 杨永国, 秦勇 , 等. 基于组合权重的煤层气有利区块模糊优选[J]. 煤炭学报, 2012,37(2):242-246.
[8] LUO J H, YANG Y G, XU W W . Fuzzy optimization for CBM favorable targets based on combined weights[J]. Journal of China Coal Society, 2012,37(2):242-246.
[9] 李陈, 赵刚, 陈丽群 . 考虑基质收缩效应的煤层气藏产能评价[J]. 特种油气藏, 2019,26(1):106-110.
[9] LI C, ZHAO G, CHEN L Q . Productivity evaluation of coalbed methane reservoir with matrix shrinkage effect[J]. Special Oil & Gas Reservoirs, 2019,26(1):106-110.
[10] PING S, PAN H D, SHEN Y C , et al. Main deposit styles and associated tectonics of the West Junggar region, NW China[J]. Geoscience Frontiers, 2015,6(2):175-190.
[11] MENG Y J, TANG D Z, XU H , et al. Geological controls and coalbed methane production potential evaluation: A case study in Liulin area, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2014,21:95-111.
[12] 杨建强 . 芦岭井田煤层气直井产能主控因素研究[D]. 西安:西安科技大学, 2016.
[12] YANG J Q . Study on the main control factors of coal bed methane vertical well productivity in Luling Mine Field[D]. Xi’an: Xi’an University of Science and Technology, 2016.
[13] 冯立杰, 贾依帛, 岳俊举 , 等. 煤层气开采关键地质影响因素[J]. 石油与天然气地质, 2017,38(6):1105-1112.
[13] FENG L J, JIA Y B, YUE J J , et al. Key geological factors influencing coal-bed methane exploitation[J]. Oil & Gas Geology, 2017,38(6):1105-1112.
[14] 穆福元, 王红岩, 吴京桐 , 等. 中国煤层气开发实践与建议[J]. 天然气工业, 2018,38(9):55-60.
[14] MU F Y, WANG H Y, WU J T , et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry, 2018,38(9):55-60.
[15] CHEN Z H, WANG Y B, YANG J S , et al. Influencing factors on coal-bed methane production of single well: A case of Fanzhuang Block in the south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2009,30(23):34-38.
[16] 王勃, 姚红星, 王红娜 , 等. 沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J]. 石油与天然气地质, 2018,39(2):366-372.
[16] WANG B, YAO H X, WANG H N , et al. Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang Block, Qinshui Baisn[J]. Oil & Gas Geology, 2018,39(2):366-372.
[17] WU C F, QIN Y, FU X H , et al. Evolvement history sumulation of stratum energy of coalbed gas reservoirs Qinshui Basin[J]. Natural Gas Geoscience, 2007,18(4):557-571.
[18] PALMER I, MANSOORI J . How permeability depends on stress and pore pressure in coalbed: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998,11(6):539-544.
[19] GENTRY R W . Decline curve analysis[J]. Journal of Petroleum Technology, 1972,24(1):38-41.
[20] 刘鹏, 张燕, 张重生 , 等. 大数据[M]. 北京: 电子工业出版社, 2017: 112-113.
[20] LIU P, ZHANG Y, ZHANG C S , et al. Big data[M]. Beijing: Electronic Industry Press, 2017: 112-113.
[21] 聂玲, 周德胜, 郭向东 , 等. 利用灰色关联法分析低渗气藏压裂影响因素[J]. 断块油气田, 2013,20(1):133-136.
[21] NIE L, ZHOU D S, GUO X D , et al. Analysis on influencing factors of postfracture response in low permeability gas reservoir with gray correlation method[J]. Fault-Block Oil & Gas Field, 2013,20(1):133-136.
[22] 李玉伟, 艾池, 胡超洋 , 等. 应用模糊综合评判和灰色关联度分析评价水平井多级压裂效果[J]. 数学的实践与认识, 2014,44(2):51-56.
[22] LI Y W, AI C, HU C Y , et al. Evaluating multistage fracturing effect of horizontal wells using fuzzy comprehensive evaluation and grey relational grade analysis[J]. Mathematics in Practice and Theory, 2014,44(2):51-56.
Outlines

/