Engineering Process

Ultrasonic testing and evaluation method for hydraulic fracturing coal by voltage pulse

  • Xiankai BAO ,
  • Jiaxing CAO ,
  • Gang ZHAO ,
  • Junyu GUO ,
  • Yuan LIU ,
  • Jinchang ZHAO ,
  • Jinwen WU
Expand
  • 1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
    2. College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    3. School of Science, North University of China, Taiyuan, Shanxi 030051, China

Received date: 2019-06-24

  Online published: 2020-08-07

Abstract

In order to quantitatively evaluate the fracturing effect of hydraulic fracturing by voltage pulse on coal rocks, and determine that whether the technology is suitable for the voltage and water pressure loading in engineering practice or not, the voltage pulse hydraulic fracturing ultrasonic testing test is designed, the fracturing effect of this technique on coal rocks under different loading conditions is quantitatively characterized by the numerical calculation from damage variables and crack propagation width, and its advantages compared to the operation of hydrostatic fracturing merely is evaluated. The conclusions are as follows: ①Due to the fluctuation of load fluid electrical pressure, the damage degree around the borehole is the most serious, reducing with the decreases of the fluctuating pressure. ②The damage variables and crack width are positively correlated with the loading voltage, which increase with the increase of voltage. ③The fracturing effect of hydraulic fracturing by voltage pulse on coal is quantitatively analyzed from damage variable and crack width, which can provide reference for coalbed methane.

Cite this article

Xiankai BAO , Jiaxing CAO , Gang ZHAO , Junyu GUO , Yuan LIU , Jinchang ZHAO , Jinwen WU . Ultrasonic testing and evaluation method for hydraulic fracturing coal by voltage pulse[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(4) : 81 -86 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.012

References

[1] 赵瑜, 王超林, 曹汉 , 等. 页岩渗流模型及孔压与温度影响机理研究[J]. 煤炭学报, 2018,43(6):1754-1760.
[1] ZHAO Y, WANG C L, CAO H , et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability[J]. Journal of China Coal Society, 2018,43(6):1754-1760.
[2] 陈天宇, 冯夏庭, 杨成祥 , 等. 含气页岩渗透率的围压敏感性和各向异性研究[J]. 采矿与安全工程学报, 2014,31(4):639-643.
[2] CHEN T Y, FENG X T, YANG C X , et al. Research on confining pressure sensitivity and anisotropy for gas shale permeability[J]. Journal of Mining and Safety Engineering, 2014,31(4):639-643.
[3] 曹成, 李天太, 王晖 , 等. 页岩渗透率测试方法研究与应用[J]. 天然气地球科学, 2016,27(3):503-512.
[3] CAO C, LI T T, WANG H , et al. Research and application of shale permeability test method[J]. Natural Gas Geoscience, 2016,27(3):503-512.
[4] 张波, 胡维强, 徐爽 , 等. 煤层气快速解吸方法研究[J]. 非常规油气, 2018,5(6):34-37.
[4] ZHANG B, HU W Q, XU S , et al. Study on the method of rapid desorption of coalbed methane[J]. Unconventional Oil & Gas, 2018,5(6):34-37.
[5] ???, ???, Lim, Jong-Se. Study for improvement of multi-stage hydraulic fracturing design for eagle ford shale reservoir using rate transient analysis[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2017,54(6):664-678.
[6] 王素兵 . 清水压裂工艺技术综述[J]. 天然气勘探与开发, 2005,28(4):39-42.
[6] WANG S B . Riverfrac treatment[J]. Natural Gas Exploration and Development, 2005,28(4):39-42.
[7] TIAN S, LI G, HUANG Z , et al. Investigation and application for multistage hydrajet-fracturing with coiled tubing[J]. Petroleum Science and Technology, 2009,27(13):1494-1502.
[8] 蔡峰, 刘泽功 . 深部低透气性煤层上向穿层水力压裂强化增透技术[J]. 煤炭学报, 2016,41(1):113-119.
[8] CAI F, LIU Z G . Simulation and experimental research on upward cross-seams hydraulic fracturing in deep and low-permeability coal seam[J]. Journal of China Coal Society, 2016,41(1):113-119.
[9] 马海峰, 程志恒, 张科学 , 等. 千米深井高瓦斯煤层W-S-W水力压裂强化增透试验研究[J]. 煤炭学报, 2017,42(7):1757-1764.
[9] MA H F, CHENG Z H, ZHANG K X , et al. Intensive permeability enhancement experiment through hydraulic fracturing by way of water-sand-water in kilometer deep well with high gas seam[J]. Journal of China Coal Society, 2017,42(7):1757-1764.
[10] 林柏泉, 王一涵, 闫发志 , 等. NaCl溶液对电脉冲致裂煤体孔隙结构影响的实验研究[J]. 煤炭学报, 2018,43(5):1328-1334.
[10] LIN B Q, WANG Y H, YAN F Z , et al. Experimental study of the effect of NaCl solution on the pore structure of coal body with high-voltage electrical pulse treatments[J]. Journal of China Coal Society, 2018,43(5):1328-1334.
[11] 周晓亭 . 重复电脉冲波煤岩致裂增渗效果岩石学分析[D]. 徐州:中国矿业大学, 2016.
[11] ZHOU X T . Petrological analysis of cracking and seepage effect of repeated electric pulse wave coal rock[D]. Xuzhou: China University of Mining and Technology, 2016.
[12] 李培培 . 钻孔注水高压电脉冲致裂瓦斯抽放技术基础研究[D]. 太原:太原理工大学, 2010.
[12] LI P P . Fundamental research on high-voltage electric pulse-induced gas drainage technology for borehole water injection[D]. Taiyuan: Taiyuan University of Technology, 2010.
[13] 鲍先凯, 杨东伟, 段东明 , 等. 高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J]. 岩石力学与工程学报, 2017,36(10):2415-2423.
[13] BAO X K, YANG D W, DUAN D M , et al. The experiment and numerical simulation of penetration of coalbed methane upon hydraulic fracturing under high-voltage electric pulse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,36(10):2415-2423.
[14] 张金才, 尹尚先 . 页岩油气与煤层气开发的岩石力学与压裂关键技术[J]. 煤炭学报, 2014,39(8):1691-1699.
[14] ZHANG J C, YIN S X . Some technologies of rock mechanics applications and hydraulic fracturing in shale oil, shale gas and coalbed methane[J]. Journal of China Coal Society, 2014,39(8):1691-1699.
[15] 侯冰, 陈勉, 李志猛 , 等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发, 2014,41(6):763-768.
[15] HOU B, CHEN M, LI Z M , et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014,41(6):763-768.
[16] 孙四清, 张群, 闫志铭 , 等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报, 2017,42(9):2337-2344.
[16] SUN S Q, ZHANG Q, YAN Z M , et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017,42(9):2337-2344.
[17] 房好青, 郭天魁, 王洋 , 等. 四川盆地涪陵地区页岩酸压裂缝渗透率实验[J]. 石油与天然气地质, 2018,39(6):1336-1342.
[17] FANG H Q, GUO T K, WANG Y , et al. Experimental study of acid-fracturing-induced fracture permeability in shale in Fuling area, Sichuan Basin[J]. Oil & Gas Geology, 2018,39(6):1336-1342.
[18] 尹锦涛, 田杰苗, 孙建博 , 等. 煤层气水力压裂增产机理及效果评价方法研究[J]. 非常规油气, 2015,2(5):72-76.
[18] YIN J T, TIAN J M, SUN J B , et al. Principle of water fracturing stimulation for CBM and its effect evaluation methods[J]. Unconventional Oil & Gas, 2015,2(5):72-76.
[19] 王晓冬, 张义堂, 刘慈群 . 垂直裂缝井产能及导流能力优化研究[J]. 石油勘探与开发, 2004,31(6):78-81.
[19] WANG X D, ZHANG Y T, LIU C Q . Productivity evaluation and conductivity optimization for vertically fractured wells[J]. Petroleum Exploration and Development, 2004,31(6):78-81
[20] 鲍先凯, 段东明, 曹嘉星 , 等. 电脉冲水力压裂煤体机理及裂缝效果评价[J]. 水利水电技术, 2018,49(8):39-46.
[20] BAO X K, DUAN D M, CAO J X , et al. Evaluation on mechanism of electric-pulse hydraulic fracturing of coal mass and its cracking effect[J]. Water Resources and Hydropower Engineering, 2018,49(8):39-46.
[21] QASRAWI H Y, IQBAL A M . The use of USPV to anticipate failure in concrete under compression[J]. Cement and Concrete Research, 2003,33(12):2017-2021.
[22] 李健, 荣吉利, 杨荣杰 , 等. 水中爆炸冲击波传播与气泡脉动的实验及数值模拟[J]. 兵工学报, 2008,29(12):1437-1443.
[22] LI J, RONG J L, YANG R J , et al. Experimental and numerical simulation of shock wave propagation and bubble impulse of underwater explosion[J]. Acta Armamentarii, 2008,29(12):1437-1443.
[23] 楚泽涵, 徐凌堂, 高明 , 等. 井下超声和高压放电——油井增产的有效措施[J]. 特种油气藏, 2008,15(1):84-87.
[23] CHU Z H, XU L T, GAO M , et al. Downhole ultrasonic and effluve——an effective stimulation method[J]. Special Oil & Gas Reservoirs, 2008,15(1):84-87.
[24] 陆小兵, 王守虎, 隋蕾 , 等. 电脉冲解堵增注机理分析及应用[J]. 天然气与石油, 2011,29(6):61-62.
[24] LU X B, WANG S H, YAN L , et al. Analysis and application of electric pulse de-plugging and injection-adding mechanism[J]. Natural Gas and Oil, 2011,29(6):61-62.
Outlines

/