Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 5: 34 - 41
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.05.005
Adaptability evaluation and analysis of low density 3D seismic exploration method for shale gas
Received date: 2020-02-19
Online published: 2020-09-24
3D seismic exploration technology with the mode of “Wide-azimuth, high-density and broadband” is widely used in the exploration of conventional and unconventional oil and gas. Technical effectiveness and economy are the two main factors restricting seismic exploration, especially unconventional oil and gas exploration(shale oil and gas, coalbed methane, etc.), whose economy is the main influencing factor. Taking 3D seismic exploration for the shale gas with normal pressure in Wulong as an example, the successful 3D method of shale gas with low density and economy is introduced, and the purpose of reducing the exploration cost of 3D seismic data and improving the exploration effect is achieved. Combined with the similar conventional 3D seismic exploration examples in Taozidang area, the S/N ratio is evaluated and analyzed emphatically. It is pointed out that the application geological background with relatively simple structure, regional enrichment and strong reflective seismic interface, low density observation system with high cost performance, single shot record with high energy and SNR, and methods of improving S/N ratio and high-precision static correction for seismic exploration are the keys to the success of low density 3D shale gas. The application of deep well and large dosage saturation excitation to ensure the energy and S/N ratio of seismic acquisition data, improve the ratio of effective seismic record ratio, and the method and measure of field management are worthy of reference. Its successful experience has been widely used in 3D seismic exploration in Guihua and Yangchungou.
Houyu LIU . Adaptability evaluation and analysis of low density 3D seismic exploration method for shale gas[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(5) : 34 -41 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.005
[1] | 马永生, 张建宁, 赵培荣, 等. 物探技术需求分析及攻关方向思考[J]. 石油物探, 2016,55(1):1-9. |
[1] | MA Y S, ZHANG J N, ZHAO P R, et al. Requirement analysis and research direction for the geophysical prospecting technology of SINOPEC[J]. Geophysical Prospecting for Petroleum, 2016,55(1):1-9. |
[2] | 夏颖, 王艳, 王丽新, 等. 适用于百万道采集的地震仪器技术展望[J]. 物探装备, 2013,23(5):281-284. |
[2] | XIA Y, WANG Y, WANG L X, et al. Prospect of seismic instrument technology suitable for million channel acquisition[J]. Equipment for Geophysical Prospecting, 2013,23(5):281-284. |
[3] | 王华忠. “两宽一高”油气地震勘探中的关键问题分析[J]. 石油物探, 2019,58(3):313-324. |
[3] | WANG H Z. Key problem analysis in seismic exploration based on wide-azimuth, high-density, and broadband seismic data[J]. Geophysical Prospecting for Petroleum, 2019,58(3):313-324. |
[4] | 宁宏晓, 唐东磊, 皮红梅, 等. 国内陆上“两宽一高”地震勘探技术及发展[J]. 石油物探, 2019,58(5):645-653. |
[4] | NIN H X, TANG D L, PI H M, et al. The technology and development of“WBH”seismic exploration in land, China[J]. Geophysical Prospecting for Petroleum, 2019,58(5):645-653. |
[5] | 陈祖庆, 杨鸿飞, 王静波, 等. 页岩气高精度三维地震勘探技术的应用与探讨[J]. 天然气工业, 2016,36(2):9-20. |
[5] | CHEN Z Q, YANG H F, WANG J B, et al. Application of 3D high-precision seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin[J]. Natural Gas Industry, 2016,36(2):9-20. |
[6] | 龙胜祥, 张永庆, 李菊红, 等. 页岩气藏综合地质建模技术[J]. 天然气工业, 2019,39(3):47-55. |
[6] | LONG S X, ZHANG Y Q, LI J H, et al. Comprehensive geological modeling technology for shale gas reservoirs[J]. Natural Gas Industry, 2019,39(3):47-55. |
[7] | 查树贵, 刘利平, 廖朋, 等. 水平井地震地质导向技术及其在涪陵页岩气田的应用[J]. 石油物探, 2018,57(3):369-377. |
[7] | ZHA S G, LIU L P, LIAO P, et al. Seismic geo-steering technology of horizontal well and its application in Fuling shale gas field[J]. Geophysical Prospecting for Petroleum, 2018,57(3):369-377. |
[8] | 何贵松, 何希鹏, 高玉巧 , 等.一种盆缘复杂构造区常压页岩气藏成藏模式建立方法:CN110259440A[P]. 2019-09-20. |
[8] | HE G S, HE X P, GAO Y Q , et al. A method to establish the reservoir forming model of atmospheric shale gas reservoir in the basin margin complex structural area: CN110259440A[P]. 2019-09-20. |
[9] | 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组—龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018,39(3):485-497. |
[9] | WANG C, ZHANG B Q, SHU Z G, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):485-497. |
[10] | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018,39(3):472-484. |
[10] | HE C C, HE S, GUO X S, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation’s first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):472-484. |
[11] | 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018,38(10):1-10. |
[11] | MA X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018,38(10):1-10. |
[12] | 蔡进, 吉婧, 刘莉, 等. 湘鄂西—鄂西渝东地区上奥陶统五峰—下志留统龙马溪组页岩气成藏条件研究[J]. 非常规油气, 2019,6(4):18-24. |
[12] | CAI J, JI J, LIU L, et al. Study on shale gas accumulation condition of Upper Ordovician Wufeng Formation-Lower Silurian series Long maxi Formation in Western Hubei and Hunan—western hubei and eastern Chongqing area[J]. Unconventional Oil & Gas, 2019,6(4):18-24. |
[13] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018,38(12):1-14. |
[13] | HE X P, HE G S, GAO Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):1-14. |
[14] | 高玉巧, 蔡潇, 张培先, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018,38(12):15-25. |
[14] | GAO Y Q, CAI X, ZHANG P X, et al. Pore characteristics and evolution of Wufeng-Longmaxi Fms shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):15-25. |
[15] | 屠世杰. 高精度三维地震勘探中的炮密度、道密度选择[J]. 石油地球物理勘探, 2010,45(6):926-935. |
[15] | TU S J. Selection of shot density and trace density in high precision 3D seismic exploration[J]. Oil Geophysical Prospecting, 2010,45(6):926-935. |
[16] | 赵贤正, 张以明, 唐传章, 等. 高精度三维地震采集处理解释一体化勘探技术与管理[J]. 中国石油勘探, 2008,13(2):74-82. |
[16] | ZHAO X Z, ZHANG Y M, TANG C Z, et al. Integrated exploration technology and management of high-precision 3D seismic acquisition, processing and interpretation[J]. China Petroleum Exploration, 2008,13(2):74-82. |
[17] | 柳兴刚, 朱国铭, 于世东, 等. 复杂山地三维地震勘探中的现场处理技术[J]. 中国石油勘探, 2013,18(3):40-45. |
[17] | LIU X G, ZHU G M, YU S D, et al. Field processing technique for 3D seismic prospecting in complex mountainous areas[J]. China Petroleum Exploration, 2013,18(3):40-45. |
[18] | 唐杰, 张文征, 戚瑞轩, 等. 基于噪声水平估计的加权核范数最小化噪声压制方法研究[J]. 石油物探, 2019,58(5):734-740. |
[18] | TANG J, ZHANG W Z, QI R X, et al. Seismic data denoising by weighted nuclear minimization based on noise specting for Petroleum, 2019,58(5):734-740. |
[19] | 王立歆, 林伯香. 复杂近地表探区静校正量的地表一致性融合技术[J].石油物探, 2019,58(1) 34-42. |
[19] | WANG L X, LIN B X. Surfaceconsistent integration of different versions of statics in complicated near surface[J]. Geophysical Prospecting for Petroleum, 2019,58(1):34-42. |
[20] | 黄鹏, 殷厚成, 薛维忠, 等. 山前带复杂浅表层建模研究[J]. 石油物探, 2019,58(6):837-845. |
[20] | HUANG P, YIN H C, XUE W Z, et al. Modeling of complex near-surface in piedmont zone[J]. Geophysical Prospecting for Petroleum, 2019,58(6):837-845. |
[21] | 王霞, 李丰, 张延庆, 等. 五维地震数据规则化及其在裂缝表征中的应用[J]. 石油地球物理勘探, 2019,54(4):844-852. |
[21] | WANG X, LI F, ZHANG Y Q, et al. Regularization of 5D seismic data and its application in fracture characterization[J]. Oil Geophysical Prospecting, 2019,54(4):844-852. |
[22] | 印兴耀, 张洪学, 宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探, 2018,57(2):155-178. |
[22] | YIN X Y, ZHANG H X, ZONG Z Y. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum, 2018,57(2):155-178. |
[23] | 庞仕敏. 赤水地区地震资料处理中串相位问题的解决[J]. 内蒙古石油化工, 2014,24(11):65-68. |
[23] | PANG S M. Solving the problem of series phase in seismic data processing in Chishui area[J]. Inner Mongolia Petrochemical Industry, 2014,24(11):65-68. |
[24] | 李鹏飞, 崔德育, 黄诚. 地震资料处理解释一体化技术在塔北碳酸盐岩储层识别中的应用[J]. 石油地球物理勘探, 2018,53(Z2):306-313. |
[24] | LI P F, CUI D Y, HUANG C. Application of integrated seismic data processing and interpretation technology in carbonate reservoir identification in Tabei[J]. Oil Geophysical Prospecting, 2018,53(Z2):306-313. |
[25] | 印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018,57(4):488-504. |
[25] | YIN X Y, MA N, MA Z Q, et al. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018,57(4):488-504. |
[26] | 张水山, 熊晓军, 刘阳, 等. 基于综合信息的三维层速度场建立及其在涪陵页岩气田应用研究[J]. 石油物探, 2018,57(1):122-128. |
[26] | ZHANG S S, XIONG X J, LIU Y, et al. Three-dimensional interval velocity building based on comprehensive data analysis and its application in Fuling shale gas field exploration[J]. Geophysical Prospecting for Petroleum, 2018,57(1):122-128. |
[27] | 冯波, 吴成梁, 王华忠 . 反射波层析反演速度建模方法[J]. 石油物探, 2019,58(3):371-380. |
[27] | FENG B, WU C L, WANG H Z. Velocity model building using reflection tomography[J]. Geophysical Prospecting for Petroleum, 2019,58(3):371-380. |
[28] | 刘厚裕. 中国南方碳酸盐岩裸露区表层地震地质条件研究[J]. 油气藏评价与开发, 2012,2(6):6-9. |
[28] | LIU H Y. Research on surface seismic geologic condition of carbonate exposed area in South China[J]. Reservoir Evaluation and Development, 2012,2(6):6-9. |
[29] | 敬朋贵, 殷厚成, 陈祖庆. 南方复杂山地三维地震勘探实践与效果分析[J]. 石油物探, 2010,49(5):495-499. |
[29] | JING P G, YIN H C, CHEN Z Q. Practice and effect analysis of 3D seismic exploration in complex mountainous area of South China[J]. Geophysical Prospecting for Petroleum, 2010,49(5):495-499. |
/
〈 | 〉 |