Petroleum Reservoir Evaluation and Development >
2020 , Vol. 10 >Issue 5: 49 - 54
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.05.007
Correction methods for acoustic anisotropy of bedding shale
Received date: 2020-02-16
Online published: 2020-09-24
The physical and mechanical properties of bedding shales show strong anisotropy, which leads to the significant difference in the logging response of the same formation between the vertical wells and the horizontal wells, and bringing the difficulties in regional reservoir evaluation. Based on the numerical simulations, the influence of orientation and density of bedding on the anisotropy of longitudinal wave has been analyzed, and a correction model for longitudinal wave of shale in Longmaxi formation has been built. Then, combined with the indoor compression wave experiment, the rationality of this new model has been analyzed. The results show that, the longitudinal wave anisotropy of shales in Longmaxi formation is obvious, and the coefficient of longitudinal wave is around 1.088 ~ 1.109. The coefficient of longitudinal wave anisotropy has a quadratic polynomial relation with the sine of the bedding angle, and the anisotropic coefficient increases linearly with the increase of bedding density. Application examples show that this new model can reasonably correct the acoustic response of horizontal wells to that of vertical wells.
Xiansheng LI , Xiangjun LIU , Lixi LIANG , Wei LI , Yang GAO , Jian XIONG . Correction methods for acoustic anisotropy of bedding shale[J]. Petroleum Reservoir Evaluation and Development, 2020 , 10(5) : 49 -54 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.007
[1] | 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018,45(4):575-587. |
[1] | ZOU C N, YANG Z, HE D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018,45(4):575-587. |
[2] | 戴金星, 秦胜飞, 胡国艺, 等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发, 2019,45(6):1-10. |
[2] | DAI J X, QING S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019,45(6):1-10. |
[3] | 侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015,36(9):2541-2550. |
[3] | HOU Z K, YANG C H, GUO Y T, et al. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015,36(9):2541-2550. |
[4] | LI W, SCHMITT D R, ZOU C C , et al. A program to calculate pulse transmission responses through transversely isotropic media[J]. Computers and Geosciences, 2018,114:59-72. |
[5] | MOHAMMAD K Z, NAZMUL H M, JAHREN J . Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf[J]. Geophysics, 2017,82(2):61-75. |
[6] | GONG F, DI B R, WEI J X , et al. Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale[J]. Geophysics, 2018,83(5):195-208. |
[7] | GONG F, DI B R, WEI J X , et al. Ultrasonic velocity and mechanical anisotropy of synthetic shale with different types of clay minerals[J]. Geophysics, 2018,83(2):57-66. |
[8] | 艾池, 仇德智, 张军, 等. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田, 2017,24(5):647-651. |
[8] | AI C, QIU D Z, ZHANG J, et al. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil and Gas Filed, 2017,24(5):647-651. |
[9] | 汪虎, 郭印同, 王磊, 等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017,38(9):2496-2506. |
[9] | WNAG H, GUO Y T, WANG L, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017,38(9):2496-2506. |
[10] | 高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业, 2018,38(8):1-7. |
[10] | GAO D L. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018,38(8):1-7. |
[11] | 焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业, 2019,39(5):1-14. |
[11] | JIAO F Z. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019,39(5):1-14. |
[12] | 耿尊博. 大斜度井与水平井孔隙度测井曲线校正技术研究[D]. 北京:中国石油大学, 2011. |
[12] | GENG Z B. Research on correction technique of porosity logging curves in high angle deviated wells and horizontal wells[D]. Beijing: China University of Petroleum, 2011. |
[13] | HORNBY B E, HOWIEZ J M, INCE D W . Anisotropy correction for deviated-well sonic logs: Application to seismic well tie[J]. Geophysics, 2003,68(2):464-471. |
[14] | 乔悦东, 孙建孟, 耿尊博. 斜井泥岩声波速度各向异性校正新方法研究[J]. 石油天然气学报, 2010,32(5):104-108. |
[14] | QIAO Y D, SUN J M, GENG Z B. New methods of shale acoustic velocity anisotropy correction in deviated wells[J]. Journal of Oil and Gas Technology, 2010,32(5):104-108. |
[15] | 刘劲歌, 樊洪海, 沙昱良, 等. 斜井测井声波检测孔隙压力校正方法研究[J]. 钻采工艺, 2015,38(1):25-28. |
[15] | LIU J G, FAN H H, SHA Y L, et al. Research on pore pressure detection using deviated well acoustic waves[J]. Drilling and Production Technology, 2015,38(1):25-28. |
[16] | 时建超, 屈雪峰, 雷启鸿, 等. 致密油水平井声波时差测井影响因素分析及测井响应特征研究——以鄂尔多斯盆地陇东地区长7储层为例[J]. 西北大学学报(自然科学版), 2017,47(4):585-592. |
[16] | SHI J C, QU X F, LEI Q H, et al. The influencing factors and response characteristics of acoustic time logging in tight oil horizontal well: A case study of Chang 7 reservoir in logging area of Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2017,47(4):585-592. |
[17] | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76. |
[17] | DONG D Z, SHI Z S, GUANG Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76. |
[18] | 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019,40(1):41-49. |
[18] | WANG H, HE Z L, ZHANG Y G, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil and Gas Geology, 2019,40(1):41-49. |
[19] | 段茜, 刘向君. 实验室尺度下气水两相裂缝型介质弹性波速度的数值模拟分析[J]. 石油物探, 2017,56(3):338-348. |
[19] | DUAN X, LIU X J. Numerical simulation of elastic wave velocity in gas-water two-phase rock from fractured model[J]. Geophysical Prospecting for Petroleum, 2017,56(3):338-348. |
[20] | 李贤胜, 刘向君, 熊健, 等. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019,31(3):152-160. |
[20] | LI X S, LIU X J, XIONG J, et al. Influence of bedding on compressional wave characteristics of shales[J]. Lithologic Reservoir, 2019,31(3):152-160. |
[21] | 陈乔, 徐烽淋, 程亮, 等. 基于黏弹性介质波动理论的页岩超声波数值模拟[J]. 天然气工业, 2019,39(6):63-70. |
[21] | CHEN Q, XUN F L, CHENG L, et al. Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory[J]. Natural Gas Industry, 2019,39(6):63-70. |
/
〈 | 〉 |