Shale Gas Development

Volume fracturing technology of deep shale gas in southern Sichuan

  • Xingwen Wang ,
  • Yongmao Lin ,
  • Weijie Miao
Expand
  • Research Institute of Petroleum Engineering, Sinopec Southwest China Oil and Gas Company, Deyang, Sichuan 618000, China

Received date: 2020-10-20

  Online published: 2021-02-04

Abstract

Due to the deep buried depth(3 500~4 200 m), high ground stress, high ground stress discrepancy(7 to 17 MPa), low reservoir brittle(< 0.5) and the undeveloped natural fracture, the hydraulic fracture of Weirong deep shale gas face the problems of high fracturing construction pressure, narrower pressure window, low sensitive sand concentration, high fracturing difficulty. Large-scale physical model experiments show that the morphology of Weirong shale fractures are composed of main fracture and branch fracture, within low fracture complexity and forming bedding seam more easily. On the basis of geology-engineering integration, the stratigraphic segmentation and clustering are optimized in combination with geological sweet spot. Through the study of the proppant transport, the placement mode and injection timing of the three-grade particle size proppant have been optimized, which increase the sand loading. The transverse complexity of fractures is improved by the combined temporary plugging steering fracturing technology. The net pressure and complexity of fractures are improved by the temporary plugging in the fractures and the optimization of construction discharge and liquid viscosity, thereby improving the fracturing volume and control reserves. The research results have been successfully applied in Weirong Gas Field. The sand loading has been increased to 1.95 t/m, the average open flow per well is 38.5×104 m3/d, and the single well EUR is 90×108 m3. All those shows a significantly improvement compared with the previous stage. Post-pressure evaluation shows that the fracturing effect is positively correlated with the sand adding strength. Therefore, how to improve the sand adding strength and control the strength of the liquid used in deep shale gas is the key to economic and effective fracturing.

Cite this article

Xingwen Wang , Yongmao Lin , Weijie Miao . Volume fracturing technology of deep shale gas in southern Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(1) : 102 -108 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.014

References

[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012,39(2):129-136.
[1] Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012,39(2):129-136.
[2] Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China[J]. Energy Geoscience, 2020,1(1-2):55-68.
[3] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020,47(5):841-855.
[3] Ma Xinhua, Xie Jun, Yong Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Foramation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020,47(5):841-855.
[4] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36.
[4] Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36.
[5] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017,44(4):481-491.
[5] Guo Xusheng, Hu Dongfeng, Li Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017,44(4):481-491.
[6] 刘土光, 张涛. 弹塑性力学基础理论[M]. 武汉: 华中科技大学出版社, 2008.
[6] Liu Tuguang, Zhang Tao. Basic theory of elasticity and plasticity[M]. Wuhan: Huazhong University of Science and Technology Press, 2008.
[7] 赵金洲, 李勇明, 王松, 等. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 2014,34(1):68-73.
[7] Zhao Jinzhou, Li Yongming, Wang Song, et al. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry, 2014,34(1):68-73.
[8] 张士诚, 牟松茹, 崔勇. 页岩气压裂数值模型分析[J]. 天然气工业, 2011,31(12):81-84.
[8] Zhang Shicheng, Mou Songru, Cui Yong. Numerical simulation models with hydraulic fracturing in shale gas reservoirs[J]. Natural Gas Industry, 2011,31(12):81-84.
[9] 任龙, 苏玉亮, 徐晨, 等. 非常规储层体积压裂水平井产能预测方法研究进展[C]// 2015油气田勘探与开发国际会议论文集. 西安:西安石油大学, 2015.
[9] Ren Long, Su Yuliang, Xu Chen, et al. Advances in the method of production performance prediction of SRV-fractured horizontal wells in unconventional reservoirs[C]// paper presented at the 2015 International Field Exploration and Development Conference. Xi’an: Xi’an Shiyou University, 2015.
[10] 王雷, 王琦. 页岩气储层水力压裂复杂裂缝导流能力实验研究[J]. 西安石油大学学报(自然科学版), 2017,32(3):73-77.
[10] Wang Lei, Wang Qi. Experimental research on seepage capacity of complex fracture in shale gas reservoir after hydraulic fracturing[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017,32(3):73-77.
[11] Zhao Z H, Wu K D, Fan Y, et al. An optimization model for conductivity of hydraulic fracture networks in the Longmaxi shale, Sichuan basin, Southwest China[J]. Energy Geoscience, 2020,1(1-2):47-54.
[12] Niandou H, Shao J F, Henry J P, et al. Laboratory investigation of the mechanical behaviour of tournemire shale[C]. International Journal of Rock Mechanics and Mining Sciences, 1997,34(1):3-16.
[13] 李庆辉, 陈勉, 金衍. 含气页岩破坏模式及力学特性的实验研究[J]. 岩石力学与工程学报, 2012,31(S2):3763-3771.
[13] Li Qinghui, Chen Mian, Jin Yan. Experimental research on failure modes and mechanical behaviors of gas-bearing shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(S2):3763-3771.
[14] 孟陆波, 李天斌, 徐进, 等. 高温作用下围压对页岩力学特性影响的实验研究[J]. 煤炭学报, 2012,37(11):1829-1833.
[14] Meng Lubo, Li Tianbin, Xu Jin, et al. Experimental study on influence of confining pressure on shale mechanical properties under high temperature condition[J]. Journal of China Coal Society, 2012,37(11):1829-1833.
[15] Taleghani A D, Olson J E. Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures[C]// paper SPE-124884-MS presented at the SPE Annual Technical Conference and Exhibition, October 4-7, 2009, New Orleans, Louisiana, USA.
[16] Jeffrey R G, Zhang X, Thiercelin M J. Hydraulic fracture offsetting in naturally fractures reservoirs: quantifying a long-recognized process[C]// paper SPE-119351-MS presented at the SPE Hydraulic Fracturing Technology Conference, January 19-21, 2009, The Woodlands, Texas, USA.
[17] 李勇明, 郭建春, 赵金洲, 等. 裂缝性气藏压裂液滤失模型的研究及应用[J]. 石油勘探与开发, 2004,31(5):120-122.
[17] Li Yongming, Guo Jianchun, Zhao Jinzhou, et al. New model for fracturing fluid leak-off in naturally fractured gas fields and its application[J]. Petroleum Exploration and Development, 2004,31(5):120-122.
[18] 唐川. 页岩气藏水平井产量递减预测研究[D]. 成都:西南石油大学, 2013.
[18] Tang Chuan. The production decline prediction research of the horizontal well in shale reservoirs[D]. Chengdu: Southwest Petroleum University, 2013.
[19] Zhou W T, Banerjee R, Poe B, et al. Semi-analytical production simulation of complex hydraulic fracture net-works[J]. SPE Journal, 2014,19(1):6-18.
[20] 王星皓. 泥页岩储层可压性研究[D]. 成都:西南石油大学, 2012.
[20] Wang Xinghao. Research on fracability of mud-shale reservoir[D]. Chengdu: Southwest Petroleum University, 2012.
[21] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013,34(3):523-527.
[21] Yuan Junliang, Deng Jingen, Zhang Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013,34(3):523-527.
[22] 李勇明, 李莲明, 郭建春, 等. 二次加砂压裂理论模型及应用[J]. 新疆石油地质, 2010,31(2):190-193.
[22] Li Yongming, Li Lianming, Guo Jianchun, et al. Theoretical model and application of secondary sand fracturing[J]. Xinjiang Petroleum Geology, 2010,31(2):190-193.
Outlines

/