Comprehensive Research

Numerical simulation of temperature field in self-generated solid chemical fracturing

  • Zhifeng Luo ,
  • Nanlin Zhang ,
  • Liqiang Zhao ,
  • Chao Xian ,
  • Chunlei Wang ,
  • Qin Pang
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Downhole Operation Department of Natural Gas Division, CNPC Tarim Oilfield Company, Korla, Xinjiang 841000, China
    3. Exploration and Development Research Institute,Yumen Oilfield Branch of CNPC, Jiuquan, Gansu 735000, China

Received date: 2019-06-10

  Online published: 2021-02-04

Abstract

The geometry size of fractures and the time of phase change in chemical fracturing by self-generated solid are closely related to the temperature field of cracks. Based on the pseudo-three-dimensional crack propagation model, a coupled temperature field model of the cracks is established. And its coupling solution is carried out. This model takes into account the variation of viscosity of self-generated solid chemical fracturing fluids with temperature, and applies homogeneous treatment to two-phase fracturing fluids. The practical calculation results show that mutual influence among temperature field, viscosity of fracturing fluid system and fracture geometry. The increase of non-phase-change fracturing fluid accumulation with low specific heat capacity and high heat conduction coefficient is conducive to the improvement of the temperature in the cracks and the rapid phase-change of phase-change fracturing fluid to form stable support. According to the temperature distribution in the cracks, the fracturing fluid system with different phase change temperature can be selected to achieve the purpose of “phase transition in a short time and with effective support”. The research result helps to improve the pertinence of self-generated solid chemical fracturing working fluid system and operation technology design.

Cite this article

Zhifeng Luo , Nanlin Zhang , Liqiang Zhao , Chao Xian , Chunlei Wang , Qin Pang . Numerical simulation of temperature field in self-generated solid chemical fracturing[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(1) : 117 -123 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.016

References

[1] Luo Z F, Zhang N L, Zhao L Q, et al. Thermoresponsive in situ generated proppant based on liquid-solid transition of a supramolecular self-propping fracturing fluid[J]. Energy & Fuels, 2019,33(11):10659-10666.
[2] Zhao L Q, Yang Y, Du G Y, et al. Phase-change fracturing fluid for phase change fracturing: US10364388B2[P]. 2019-07-30.
[3] Zhao L Q, Yang Y, Luo Z F, et al. Phase-change hydraulic fracturing process: US10301919B2[P]. 2019-05-28.
[4] 杨勇, 赵立强, 余东合, 等. 一种相变水力压裂工艺:CN105971579B[P]. 2018-05-08.
[4] Yang Yong, Zhao Liqiang, Yu Donghe, et al. A phase change hydraulic fracturing process: CN105971579b[P]. 2018-05-08.
[5] 杜光焰, 杨勇, 赵立强, 等. 一种用于相变压裂的相变压裂液体系:CN106190086B[P]. 2019 -02-05.
[5] Du Guangyan, Yang Yong, Zhao Liqiang, et al. A phase change fracturing fluid system for phase change fracturing: CN106190086b[P]. 2019-02-05
[6] 陈一鑫. 一种新型自支撑压裂技术实验研究[D]. 成都:西南石油大学, 2017.
[6] Chen Yixin. Experimental study on a new type of self supporting fracturing technology[D]. Chengdu: Southwest Petroleum University, 2017.
[7] Zhao L Q, Chen Y X, Du J, et al. Experimental study on a new type of self-propping fracturing technology[J]. Energy, 2019,183:249-261.
[8] Dysart G R, Whitsitt N F. Fluid temperature in fractures[C]// paper SPE-1902-MS presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, 1-4 October, 1967, New Orleans, Louisiana, USA.
[9] 袁学浩, 姚艳斌, 甘泉, 等. TOUGH-FLAC3D热流固耦合模拟煤储层水力压裂过程[J]. 石油与天然气地质, 2018,39(3):611-619.
[9] Yuan Xuehao, Yao Yanbin, Gan Quan, et al. Investigation of hydraulic fracturing process in coal reservoir by a coupled thermo-hydro-mechanical simulator TOUGH-FLAC3D[J]. Oil & Gas Geology, 2018,39(3):611-619.
[10] Wheeler J A. Analytical calculations for heat transfer from fractures[C]// paper SPE-2494-MS presented at the SPE Improved Oil Recovery Symposium, 13-15 April, 1969, Tulsa, Oklahoma, USA.
[11] Biot M A, Masse L, Medlin W L. Temperature analysis in hydraulic fracturing[J]. Journal of Petroleum Technology, 1987,39(11):1389-1397.
[12] Kamphuis H, Davies D, Roodhart L. A new simulator for the calculation of the in situ temperature profile during well stimulation fracturing treatments[J]. Journal of Canadian Petroleum Technology, 1993,32(5):46-54.
[13] 罗攀登, 李涵宇, 翟立军, 等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田, 2019,26(2):225-230.
[13] Luo Pandeng, Li Hanyu, Zhai Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2019,26(2):225-230.
[14] 乔继彤, 张若京, 姚飞, 等. 水力压裂的二维温度场分析[J]. 同济大学学报(自然科学版), 2000,28(4):434-437.
[14] Qiao Jitong, Zhang Ruojing, Yao Fei, et al. Study of two-dimensional temperature distribution in hydraulic fracturing[J]. Journal of Tongji University(Natural Science Edition), 2000,28(4):434-437.
[15] Kresse O, Weng X W, Cohen C E. Influence of fracturing fluid and reservoir temperature on production for complex hydraulic fracture network in shale gas reservoir[C]// paper SPE-167097-MS presented at the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 11-13 November, 2013, Brisbane, Australia.
[16] Sun Z X, Xin Y, Yao J, et al. Numerical investigation on the heat extraction capacity of dual horizontal wells in enhanced geothermal systems based on the 3-D THM model[J]. Energies, 2018,11(2):280.
[17] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019,49(6):1723-1731.
[17] Sun Keming, Zhang Yu. Simulation of influence of fracture-network spacing on temperature of HDR geothermal reservoir[J]. Journal of Jilin University(Earth Science Edition), 2019,49(6):1723-1731.
[18] 邢淦民. 基于流型的气液两相流管道振动机理研究[D]. 青岛:中国石油大学(华东), 2013.
[18] Xing Ganmin. Research of vibration mechanism of pipeline conveying gas-liquid two-phase flow based on flow pattern[D]. Qingdao: China University of Petroleum(East China), 2013.
[19] 薛衡, 黄祖熹, 赵立强, 等. 考虑岩矿非均质性的前置液酸压模拟研究[J]. 天然气工业, 2018,38(2):59-66.
[19] Xue Heng, Huang Zuxi, Zhao Liqiang, et al. A simulation study on the pre?ush acid fracturing considering rock heterogeneity[J]. Natural Gas Industry, 2018,38(2):59-66.
[20] Palmer I D, Carroll H B. Three-dimensional hydraulic fracture propagation in the presence of stress variations[J]. Society of Petroleum Engineers Journal, 1983,23(6):870-878.
[21] 赵金洲, 李勇明, 王松, 等. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 2014,34(1):68-73.
[21] Zhao Jinzhou, Li Yongming, Wang Song, et al. Simulation of complex fracture network influence by natural fracture[J]. Natural Gas Industry, 2014,34(1):68-73.
[22] 鲜超. 自生固相化学压裂温度场模拟研究[D]. 成都:西南石油大学, 2018.
[22] Xian Chao. Study on the temperature of self-generated solid phase chemical fracturing[D]. Chengdu: Southwest Petroleum University, 2018.
[23] 王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998.
[23] Wang Hongxun, Zhang Shicheng. Numerical calculation method of hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998.
Outlines

/