Shale Gas Development

Optimization and application of fracture control and channeling prevention technology in Weiyuan shale gas horizontal well

  • Lingxiang Zeng
Expand
  • Downhole Services Company, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, Sichuan 610051

Received date: 2020-04-14

  Online published: 2021-02-04

Abstract

Due to the large natural fractures and the single extension of hydraulic fractures, gas channeling occurs easily during fracturing of multi-platform, as a result the instantaneous gas production of adjacent wells is reduced by at most 93 %, and the wellhead pressure is increased by at most 12 MPa, which seriously affects the fracturing development effect of shale gas. For this complex situation, a fracture control and channeling prevention technology for horizontal wells of shale gas is proposed, which mainly includes fracture-length control of multiple fracture and steering fracture. By the measures of increasing the number of hydraulic fractures to reduce the net pressure, or using temporary plugging materials to steer hydraulic fractures, the extension direction of hydraulic fractures has been controlled and the fracture complexity has been increased to reduce the interacting of adjacent wells, and finally make the shale gas effectively develops in the well controlled gas drainage area. The numerical simulation shows that after applying this technology, the effective fracture length is shortened by 11.9 %~24.8 % The field application effect is obvious, the fracture length monitored by real-time micro seismic is reduced by 24 %, and the real-time monitoring pressure of adjacent wells does not change. The fracture control and channeling prevention technology in horizontal wells of shale gas does not only provides theoretical support for field application, but also reduces the probability of complex situations and improves the production of single well.

Cite this article

Lingxiang Zeng . Optimization and application of fracture control and channeling prevention technology in Weiyuan shale gas horizontal well[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(1) : 81 -85 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.011

References

[1] 罗健, 戴鸿鸣, 邵隆坎, 等. 四川盆地下古生界页岩气资源前景预测[J]. 岩性油气藏, 2012,24(4):70-74.
[1] Luo Jian, Dai Hongming, Shao Longkan, et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin[J]. Lithologic Reservoirs, 2012,24(4):70-74.
[2] 龙胜祥, 曹艳, 朱杰, 等. 中国页岩气发展前景及相关问题初探[J]. 石油与天然气地质, 2016,37(6):847-853.
[2] Long Shengxiang, Cao Yan, Zhu Jie, et al. A preliminary study on prospects for shale gas industry in China and relevant issues[J]. Oil & Gas Geology, 2016,37(6):847-853.
[3] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019,40(3):451-458.
[3] Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019,40(3):451-458.
[4] 李晓萌, 潘仁芳, 武文竞, 等. 川南地区下古生界筇竹寺组与龙马溪组页岩气纵向对比及评价[J]. 石油化工应用, 2016,35(10):87-92.
[4] Li Xiaomeng, Pan Renfang, Wu Wenjing, et al. Shale gas comparision and evaluation of Longmaxi formation and Qiongzhusi formation of lower Palaeozoic in the area of southern Sichuan[J]. Petrochemical Industry Application, 2016,35(10):87-92.
[5] 周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016,28(5):18-25.
[5] Zhou Wen, Xu Hao, Yu Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016,28(5):18-25.
[6] 谢军. 长宁—威远国家级页岩气示范区建设实践与成效[J]. 天然气工业, 2018,38(2):1-7.
[6] Xie Jun. Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J]. Natural Gas Industry, 2018,38(2):1-7.
[7] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018,38(10):1-7.
[7] Ma Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018,38(10):1-7.
[8] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016,43(2):166-178.
[8] Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016,43(2):166-178.
[9] 刘伟新, 范明, 俞凌杰, 等. 页岩气保存机制探讨[J]. 石油实验地质, 2018,40(1):126-132.
[9] Liu Weixin, Fan Ming, Yu Lingjie, et al. Preservation mechanism of Fuling shale gas[J]. Petroleum Geology & Experiment, 2018,40(1):126-132.
[10] 周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019,40(3):469-477.
[10] Zhou Qingfan, Jin Zhiyun, Yang Guofeng, et al. Shale oil exploration and production in the U.S.: Status and outlook[J]. Oil & Gas Geology, 2019,40(3):469-477.
[11] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76.
[11] Dong Dazhong, Shi Zhensheng, Guang Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76.
[12] 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019,40(6):1215-1225.
[12] Xiao Dianshi, Zhao Renwen, Yang Xiao, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019,40(6):1215-1225.
[13] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019,40(1):41-49.
[13] Wang Hu, He Zhiliang, Zhang Yonggui, et al. Micro fracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil & Gas Geology, 2019,40(1):41-49.
[14] 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018,39(3):472-484.
[14] He Chencheng, He Sheng, Guo Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation’s first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):472-484.
[15] 刘乃震, 王国勇, 熊小林. 地质工程一体化技术在威远页岩气高效开发中的实践与展望[J]. 中国石油勘探, 2018,23(2):59-68.
[15] Liu Naizhen, Wang Guoyong, Xiong Xiaolin. Practice and prospect of geology-engineering integration technology in the efficient development of shale gas in Weiyuan block[J]. China Petroleum Exploration, 2018,23(2):59-68.
[16] 房大志. 页岩气藏开发的关键因素[J]. 科技导报, 2013,31(31):70-74.
[16] Fang Dazhi. Key factors of shale gas development[J]. Science & Technology Review, 2013,31(31):70-74.
[17] 邓惠, 刘义成, 陈洪斌, 等. 一种快速评价气井井间干扰的方法[J]. 天然气勘探与开发, 2013,36(3):35-37.
[17] Deng Hui, Liu Yicheng, Chen Hongbin, et al. A fast method to evaluate well interference of gas wells[J]. Natural Gas Exploration & Development, 2013,36(3):35-37.
[18] 黄灿. 考虑邻井干扰的页岩气多段压裂水平井数值试井方法[J]. 特种油气藏, 2018,25(3):92-96.
[18] Huang Can. Numerical test of multi-stage fractured horizontal shale gas well with inter-well interference[J]. Special Oil & Gas Reservoirs, 2018,25(3):92-96.
[19] 刘霜. 涪陵页岩气田加密井井间干扰判别及对邻井的影响[J]. 江汉石油职工大学学报, 2019,32(3):34-36.
[19] Liu Shuang. Discrimination of inter-well interference of infill wells and influence on adjoining wells in Fuling shale gas field[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019,32(3):34-36.
[20] 李继庆, 刘曰武, 黄灿, 等. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018,30(6):138-144.
[20] Li Jiqing, Liu Yuewu, Huang Can, et al. Multi-stage fracturing horizontal well interference test model and its application[J]. Lithologic Reservoirs, 2018,30(6):138-144.
Outlines

/