Expert Forum

Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin

  • Zhiliang HE ,
  • Haikuan NIE ,
  • Tingxue JIANG
Expand
  • 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    2. Sinopec Key Laboratory of Shale Oil/Gas Exploration & Production, Beijing 100083, China
    3. Department of Science and Technology, Sinopec, Beijing 100728, China
    4. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
    5. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China

Received date: 2021-01-12

  Online published: 2021-04-30

Abstract

Deep shale gas(buried depth is larger than 3 500 m) is the potential resource for future exploration in Sichuan Basin. Although the industrial shale gas flows have been obtained at the depth of 3 500~4 000 m in Wufeng-Longmaxi Formation of Sichuan Basin, the commercial development hasn’t been put into practice due to the rapid decline and the low EUR(Estimated Ultimate Recovery). Based on the analysis of the current status of shale gas exploration and development, the challenges in the deep shale gas development with high efficiency and large scale in Sichuan Basin have been summarized, mainly in the following aspects: the understanding of occurrence mechanism and enrichment law of deep shale gas needs to be deepened, engineering and technology of economical and effective fracturing treatment need to be established, and the organizational operations and management methods of deep shale gas development are difficult to meet the needs of the large-scale and high efficient development. Three countermeasures are proposed to realize the large-scale and highly efficient development of deep shale gas: ①deepening the understanding of deep shale gas enrichment laws, establishing the methods of area selection and evaluation, and forming the prediction and description technologies of “sweet spot” and “sweet window”; ②deepening the research on the geological conditions of deep shale gas, forming an advanced supporting technology of drilling and fracturing and an equipment system to fully release the reservoir capacity; ③promoting the geology-engineering integration, building a new system and mechanism, and greatly reducing the cost to maximize the development benefits of deep shale gas. The industrial gas flows have been obtained in several wells at the depth of more than 3 500 m of Wufeng-Longmaxi Formation in Sichuan Basin and the proven reserves have been submitted. It is the key and priority stratum of the deep shale gas development. By deepening the geological understanding, overcoming the key technical problems, and improving the management system, it can significantly accelerate the speed, reduce the cost, increase the efficiency and achieve a large-scale and highly efficient development in a relatively short period. The output is expected to be higher than that of the middle and shallow shale gas reservoir.

Cite this article

Zhiliang HE , Haikuan NIE , Tingxue JIANG . Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(2) : 135 -145 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.02.001

References

[1] 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京: 科学出版社, 2016.
[1] Department of land and resources oil and gas strategic research center. National survey and evaluation of shale gas potential and selection of favorable areas[M]. Beijing: Science Press, 2016.
[2] 何治亮, 聂海宽, 蒋廷学, 等. 深层页岩气有效开发中的地质问题——以四川盆地及周缘五峰组—龙马溪组为例[J]. 石油学报, 2020,41(4):379-391.
[2] HE Zhiliang, NIE Haikuan, JIANG Tingxue, et al. Geological problems in the effective development of deep shale gas:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020,41(4):379-391.
[3] 曹海涛, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例[J]. 天然气工业, 2019,39(S1):118-122.
[3] CAO Haitao, ZHAN Guowei, YU Xiaoqun, et al. Main factors affecting productivity of deep shale gas wells: A case study of Yongchuan block in southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):118-122.
[4] 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019,39(11):55-63.
[4] YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(11):55-63.
[5] 蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017,37(1):90-96.
[5] JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017,37(1):90-96.
[6] 蒋廷学, 周健, 张旭, 等. 深层页岩气井裂缝扩展及导流特性研究及展望[J]. 中国科学:物理学力学天文学, 2017,47(11):33-40.
[6] JIANG Tingxue, ZHOU Jian, ZHANG Xu, et al. Overview and prospect of fracture propagation and conductivity characteristics in deep shale gas wells[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2017,47(11):33-40.
[7] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169.
[7] MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(1):161-169.
[8] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组——龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019,30(1):1-10.
[8] GUO Xusheng. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2019,30(1):1-10.
[9] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017,28(12):1781-1796.
[9] ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017,28(12):1781-1796.
[10] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574.
[10] MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574.
[11] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004,24(7):15-18.
[11] ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,24(7):15-18.
[12] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10.
[12] JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016,23(1):1-10.
[13] 张水昌, 胡国艺, 米敬奎, 等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报, 2013,34(S1):41-50.
[13] ZHANG Shuichang, HU Guoyi, MI Jingkui, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013,34(S1):41-50.
[14] 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017,28(5):724-733.
[14] HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017,28(5):724-733.
[15] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020,49(1):13-35.
[15] NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020,49(1):13-35.
[16] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014,29(4):492-506.
[16] JU Yiwen, BU Hongling, WANG Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014,29(4):492-506.
[17] 聂海宽, 张金川. 页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011,33(3):219-225.
[17] NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011,33(3):219-225.
[18] XIAO X M, WEI Q, GAI H F, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China[J]. Petroleum Science, 2015,12(4):573-586.
[19] NIE H K, JIN Z J, SUN C X, et al. Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores[J]. Energy & Fuels, 2019,33(9):8076-8100.
[20] HE Z L, NIE H K, ZHAO J H, et al. Types and origin of nanoscale pores and fractures in Wufeng and Longmaxi Shale in Sichuan Basin and its periphery[J]. Journal of Nanoscience and Nanotechnology, 2017,17(9):6626-6633.
[21] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014,88(7):1209-1218.
[21] GUO Xusheng. Rules of two-factor enrichment for marine shale gas in Southern China——Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014,88(7):1209-1218.
[22] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6.
[22] WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015,36(1):1-6.
[23] 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016,23(2):8-17.
[23] HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016,23(2):8-17.
[24] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016,37(5):557-571.
[24] NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The“source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016,37(5):557-571.
[25] HE Z L, LI S J, NIE H K, et al. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range[J]. Marine and Petroleum Geology, 2019,101:334-342.
[26] GRIESER B TALLEY C. Post-frac production analysis of horizontal completions in CANA Woodford Shale[C]// paper presented at the SPE Hydraulic Fracturing Technology Conference, February 6-8, 2012, The Woodlands, Texas, USA.
[27] FARINAS M, FONSECA E. Hydraulic fracturing simulation case study and post frac analysis in the Haynesville Shale[C]// paper SPE-163847-MS presented at the SPE Hydraulic Fracturing Technology Conference, February 4-6, 2013, The Woodlands, Texas, USA.
[28] LOWE T, POTTS M D, WOOD D E. A case history of comprehensive hydraulic fracturing monitoring in the Cana Woodford[C]// paper SPE-166295-MS presented at the SPE Annual Technical Conference and Exhibition, September 30-October 2, 2013, New Orleans, Louisiana, USA.
[29] GENTZIS T. A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA[J]. International Journal of Coal Geology, 2013,113:64-75.
[30] GENTZIS T. Review of the hydrocarbon potential of the Steele Shale and Niobrara Formation in Wyoming, USA: A major unconventional resource play?[J]. International Journal of Coal Geology, 2016,166:118-127.
[31] 陈作, 曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术, 2016,44(1):6-11.
[31] CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016,44(1):6-11.
[32] American Association of Petroleum Geologists, Energy Minerals Division. Unconventional Energy Resources: 2017 Review[J]. Natural Resources Research, 2018, https://doi.org/10.1007/s11053-018-9432-1.
[33] 彭俊威, 周青, 戴启平, 等. 国内大型压裂装备发展现状及分析[J]. 石油机械, 2016,44(5):82-86.
[33] PENG Junwei, ZHOU Qing, DAI Qiping, et al. Development status and analysis of domestic large-scale fracturing equipment[J]. China Petroleum Machinery, 2016,44(5):82-86.
[34] 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械, 2016,44(11):72-79.
[34] WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016,44(11):72-79.
[35] 张增年, 李华川, 郑家伟, 等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺, 2020,43(2):41-44.
[35] ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technology development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020,43(2):41-44.
[36] 王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017,44(4):531-539.
[36] WANG Yuman, WANG Hongkun, ZHANG Chenchen, et al. Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017,44(4):531-539.
[37] 段华, 李荷婷, 代俊清, 等. 深层页岩气水平井“增净压、促缝网、保充填”压裂改造模式——以四川盆地东南部丁山地区为例[J]. 天然气工业, 2019,39(2):66-70.
[37] DUAN Hua, LI Heting, DAI Junqing, et al. Horizontal well fracturing mode of “increasing net pressure, promoting network fracture and keeping conductivity” for the stimulation of deep shale gas reservoirs: A case study of the Dingshan area in SE Sichuan Basin[J]. Natural Gas Industry, 2019,39(2):66-70.
[38] STEGENT N A, WAGNER A L, MONTES M, et al. SMA technology extends the useful range of nonceramic proppants in the Eagle Ford Shale[C]// paper SPE-136801-MS presented at the Tight Gas Completions Conference, November 2-3, 2010, San Antonio, Texas, USA.
[39] ENRIQUEZ-TENORIO O, KNORR A, ZHU D, et al. Relationships between mechanical properties and fracturing conductivity for the Eagle Ford Shale[J]. SPE Production & Operations, 2019,34(2):318-331.
[40] 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015,20(4):1-23.
[40] WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient South China Marine Shale Gas Development[J]. China Petroleum Exploration, 2015,20(4):1-23.
[41] 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论坛, 2018,37(5):24-34.
[41] XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018,37(5):24-34.
[42] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017,22(1):1-5.
[42] HU Wenrui. Geology-engineering integration—a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017,22(1):1-5.
[43] 刘忠宝, 高波, 张钰莹, 等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发, 2017,44(1):21-31.
[43] LIU Zhongbao, GAO Bo, ZHANG Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017,44(1):21-31.
Outlines

/