Shale Gas Exploration

Micro pore structure characterization and classification evaluation of reservoirs in Weirong Deep Shale Gas Field

  • Liang XIONG ,
  • Heqing PANG ,
  • Yong ZHAO ,
  • Limin WEI ,
  • Hua ZHOU ,
  • Qian CAO
Expand
  • 1. Research Institute of Exploration and Development, Sinopec Southwest China Oil and Gas Company, Chengdu, Sichuan 610041, China
    2. Keyuan Engineering Technology Testing Center of Sichuan Province, Chengdu, Sichuan 610091, China

Received date: 2020-10-20

  Online published: 2021-04-30

Abstract

In order to study the evaluation standard of deep shale reservoirs, their micro pore characteristics have been studied. Based on the ideas of micro pore structure research with “high precision and cross scale”, and by using nitrogen adsorption, high pressure mercury injection, scanning electron microscope and mineral analysis electron microscope experiments, a series of quantitative characterization techniques of reservoir micro pore structure with full pore size range are formed, and the evaluation standard of deep shale gas reservoir is established. The research results show that: ①The pore types include organic pore, intergranular pore, intragranular pore and microfracture, which are of great difference with each other. The organic pores are dominant with the surface porosity more than 50 %, the pore morphology is complex with the distribution of elliptic, irregular or flat, the shape coefficient is 0.50~0.90, and the fractal dimension(D) is 2.72~2.92. ②Based on the full pore size characterization technology and fractal theory, the pore structure can be divided into four types. The organic pores of type Ⅰ pore structure are developed (organic pore ratio Is greater than or equal to 50 %), well sorted (sorting coefficient Is greater than or equal to 0.7), large coefficient of variation (variation coefficient Is greater than or equal to 1.1), and multi-modal distribution of pore size. ③According to the classification of pore structure and reservoir parameters, shale reservoirs are divided into four types. The key parameters make up the structure of type Ⅰ are TOC≥4 %, total gas content Is greater than or equal to 6 m3/t, porosity Is greater than or equal to 6 %, brittle mineral content Is greater than or equal to 50 %, Young’s modulus Is greater than or equal to 36 GPa, Poisson’s ratio Is less than or equal to 0.225, and type Ⅰ pore structure. This kind of reservoir is mainly distributed in 2—31 layers, which is the optimal target window position.

Cite this article

Liang XIONG , Heqing PANG , Yong ZHAO , Limin WEI , Hua ZHOU , Qian CAO . Micro pore structure characterization and classification evaluation of reservoirs in Weirong Deep Shale Gas Field[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(2) : 154 -163 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.02.003

References

[1] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574.
[1] MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574.
[2] 庞河清, 熊亮, 魏力民, 等. 川南深层页岩气富集高产主要地质因素分析——以威荣页岩气田为例[J]. 天然气工业, 2019,39(S1):78-84.
[2] PANG Heqing, XIONG Liang, WEI Liming, et al. Analysis on main geological factors of deep shale gas enrichment and high yield in South Sichuan Basin: A case study of Weirong shale gas field[J]. Natural Gas Industry, 2019,39(S1):78-84.
[3] 邱振, 邹才能, 王红岩, 等. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020,31(2):163-175.
[3] QIU Zhen, ZOU Caineng, WANG Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020,31(2):163-175.
[4] 焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业, 2019,39(5):1-14.
[4] JIAO Fangzheng. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019,39(5):1-14.
[5] 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020,47(1):11-28.
[5] LIANG Xing, XU Zhengyu, ZHANG Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan Province, China[J]. Petroleum Exploration and Development, 2020,47(1):11-28.
[6] 雷丹凤, 李熙喆, 位云生, 等. 海相页岩有效产气储层特征——以四川盆地五峰组-龙马溪组页岩为例[J]. 中国矿业大学学报, 2019,48(2):333-343.
[6] LEI Danfeng, LI Xizhe, WEI Yunsheng, et al. Characteristics of effective gas-producing reservoir in marine shale: A case study of the Wufeng-Longmaxi shales in Sichuan basin[J]. Journal of China University of Mining & Technology, 2019,48(2):333-343.
[7] 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019,39(3):11-25.
[7] WU Hengzhi, XIONG Liang, GE Zhongwei, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 2019,39(3):11-25.
[8] 陈科洛, 张廷山, 陈晓慧, 等. 页岩微观孔隙模型构建——以滇黔北地区志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2018,45(3):396-405.
[8] CHEN Keluo, ZHANG Tingshan, CHEN Xiaohui, et al. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China[J]. Petroleum Exploration and Development, 2018,45(3):396-405.
[9] 曾秋楠, 周新桂, 于炳松, 等. 陆相页岩气储层评价标准探讨——以延长组富有机质页岩为例[J]. 新疆地质, 2015,33(3):409-414.
[9] ZENG Qiunan, ZHOU Xingui, YU Bingsong, et al. Evaluation criteria of lake facies shale gas reservoir: A case study of the organic rich shale developed in Yanchang Group, Ordos Basin[J]. Xinjiang Geology, 2015,33(3):409-414.
[10] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020,47(1):193-201.
[10] GUO Xusheng, LI Yuping, BORJIGEN Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020,47(1):193-201.
[11] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017,44(1):69-78.
[11] BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017,44(1):69-78.
[12] 熊亮, 魏力民, 史洪亮. 川南龙马溪组储层分级综合评价技术及应用——以四川盆地威荣页岩气田为例[J]. 天然气工业, 2019,39(S1):60-65.
[12] XIONG Liang, WEI Limin, SHI Hongliang. Comprehensive evaluation technology and application of reservoir classification in Longmaxi Formation of South Sichuan: A case study of Weirong Shale Gas Field in Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):60-65.
[13] 王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报(自然科学版), 2016,40(4):12-19.
[13] WANG Weiming, LU Shuangfang, TIAN Weichao, et al. Liaohe Oilfield shale reservoir quality grading with micropore evaluation parameters in Damintun Depression[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016,40(4):12-19.
[14] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018,45(3):436-444.
[14] LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018,45(3):436-444.
[15] 刘树根, 叶玥豪, 冉波, 等. 差异保存条件下页岩孔隙结构特征演化及其意义[J]. 油气藏评价与开发, 2020,10(5):1-11.
[15] LIU Shugen, YE Yuehao, RAN Bo, et al. Evolution and implications of shale pore structure characteristics under different preservation conditions[J]. Reservoir Evaluation and Development, 2020,10(5):1-11.
[16] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019,9(5):1-13.
[16] FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019,9(5):1-13.
[17] 王勇, 杨公训, 路迈西. 图像识别中颗粒形状表征方法的研究[J]. 安徽理工大学学报(自然科学版), 2005,25(1):27-29.
[17] WANG Yong, YANG Gongxun, LU Maixi. The study on the method of signifying the shape coefficient of grain in image recognition[J]. Journal of Anhui University of Science and Technology(Natural Science), 2005,25(1):27-29.
[18] 焦堃, 谢国梁, 裴文明, 等. 四川盆地下古生界黑色页岩纳米孔隙形态的影响因素及其地质意义[J]. 高校地质学报, 2019,25(6):847-859.
[18] JIAO Kun, XIE Guoliang, PEI Wenming, et al. The control factors and geological implications of the nano-pore morphology of the Lower Paleozoic black shales in the Sichuan Basin, China[J]. Geological Journal of China Universities, 2019,25(6):847-859.
[19] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层——以鄂尔多斯盆地临兴区块为例[J]. 天然气工业, 2020,40(3):38-47.
[19] KONG Xingxing, XIAO Dianshi, JIANG Shu, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin[J]. Natural Gas Industry, 2020,40(3):38-47.
[20] 王欣, 齐梅, 李武广, 等. 基于分形理论的页岩储层微观孔隙结构评价[J]. 天然气地球科学, 2015,26(4):754-759.
[20] WANG Xin, QI Mei, LI Wuguang, et al. Micro-structure evaluation of shale gas reservoir based on fractal theory[J]. Natural Gas Geoscience, 2015,26(4):754-759.
[21] 熊健, 刘向君, 梁利喜. 四川盆地长宁构造地区龙马溪组页岩孔隙结构及其分形特征[J]. 地质科技情报, 2015,34(4):70-77.
[21] XIONG Jian, LIU Xiangjun, LIANG Lixi. Pore structure and fractal characteristics of Longmaxi Formation shale in the Changning Region of Sichuan Basin[J]. Geological Science and Technology Information, 2015,34(4):70-77.
[22] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019,31(3):55-65.
[22] ZHENG Shanshan, LIU Luofu, WANG Yang, et al. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2019,31(3):55-65.
[23] ZHAO J H, JIN Z J, HU Q H, et al. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018,98:507-522.
[24] BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J]. International Journal of Coal Geology, 2012,103:3-11.
[25] 刘尧文, 王进, 张梦吟, 等. 四川盆地涪陵地区五峰—龙马溪组页岩气层孔隙特征及对开发的启示[J]. 石油实验地质, 2018,40(1):44-50.
[25] LIU Yaowen, WANG Jin, ZHANG Mengyin, et al. Pore features of shale gas layer in Wufeng-Longmaxi formations in Fuling area of Sichuan Basin and the application to development[J]. Petroleum Geology & Experiment, 2018,40(1):44-50.
[26] 张海杰, 蒋裕强, 周克明, 等. 页岩气储层孔隙连通性及其对页岩气开发的启示——以四川盆地南部下志留统龙马溪组为例[J]. 天然气工业, 2019,39(12):22-31.
[26] ZHANG Haijie, JIANG Yuqiang, ZHOU Keming, et al. Connectivity of pores in shale reservoirs and its implications for the development of shale gas: A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(12):22-31.
[27] 李伟强, 穆龙新, 赵伦, 等. 滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J]. 石油勘探与开发, 2020,47(5):958-971.
[27] LI Weiqiang, MU Longxin, ZHAO Lun, et al. Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020,47(5):958-971.
[28] MA Y, ARDAKANI O H, ZHONG N N, et al. Possible pore structure deformation effects on the shale gas enrichment: An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 2020,217:103349.
Outlines

/