Petroleum Reservoir Evaluation and Development >
2021 , Vol. 11 >Issue 3: 348 - 355
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.03.009
Application effect of full-electric fracturing equipment and technology for normal pressure shale gas
Received date: 2020-11-30
Online published: 2021-06-24
With the expansion of domestic shale gas development demand and production capacity, the all-electric fracturing equipment and technology has become the recommended application technology for normal pressure shale gas fracturing engineering due to the low efficiency of conventional fracturing equipment, large environmental pollution and insufficient water power guarantee in the domestic market. This paper focuses on analyzing the demonstration application effect of all-electric fracturing technology in atmospheric shale gas resource block, demonstrating its advantages in shale gas benefit development and green and low-carbon development. Results show that the all-electric fracturing all-electric case can achieve stable high load, high reliable and continuous construction of the large displacement, high construction efficiency, The comprehensive costs of construction equipment, power, labor and maintenance, etc., fell by more than 40 %, pollution emissions by 70 %, the effective control of noise at boundary of atmospheric pressure shale gas can effectively help realize benefit the development and construction of green mining enterprises of the forehead.
Huaicheng YANG , Sujiang XIA , Qiguo GAO , Guoyang MAO . Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(3) : 348 -355 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.009
[1] | 邹才能. 页岩革命助推我国能源结构转型[J]. 气体分离, 2018, 16(5):73. |
[1] | ZOU Caineng. Shale revolution helps transform China's energy structure[J]. Gas Separation, 2018, 16(5):73. |
[2] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. |
[2] | ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1):31-44. |
[3] | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1):13-35. |
[3] | NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35. |
[4] | 王晓川, 吴根, 闫金定. 世界页岩气开发及技术发展现状与趋势[J]. 科技中国, 2018, 2(12):17-21. |
[4] | WANG Xiaochuan, WU Gen, YAN jinding. Status and trend of world shale gas development and technology development[J]. Science and Technology in China, 2018, 2(12):17-21. |
[5] | 何希鹏, 王运海, 王彦祺, 等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探, 2020, 25(1):126-136. |
[5] | HE Xipeng, WANG Yunhai, WANG Yanqi, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the southeast Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(1):126-136. |
[6] | 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019, 40(2):131-143. |
[6] | NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism,distribution and exploration prospect of normal pressure shale gas resevoir:a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its peripher[J]. Acta Petrolei Sinica, 2019, 40(2):131-143. |
[7] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14. |
[7] | HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14. |
[8] | 潘仁芳, 李笑天, 金吉能, 等. 渝东南盆缘转换带常压页岩气储层非均质性特征及主控因素[J]. 天然气工业, 2018, 38(12):26-36. |
[8] | PAN Renfang, LI Xiaotian, JIN Jineng, et al. Heterogeneity characteristics and controlling factors of normal-pressure shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):26-36. |
[9] | 周成香, 吴壮坤, 丁桥. 电动压裂泵在页岩气井压裂中的先导试验[J]. 石油机械, 2018, 46(11):104-108. |
[9] | ZHOU Chengxiang, WU Zhuangkun, DING Qiao. Pilot test of electric fracturing pump in shale gas well[J]. China Petroleum Machinery, 2018, 46(11):104-108. |
[10] | 王庆群. 利用电力开展页岩气压裂规模应用的分析及建议[J]. 石油机械, 2018, 46(7):89-93. |
[10] | WANG Qingqun. Analysis and suggestion on the application of electric power on shale gas fracturing[J]. China Petroleum Machinery, 2018, 46(7):89-93. |
[11] | 樊开赟, 荣双, 周劲, 等. 电动压裂泵在页岩气压裂中的应用[J]. 钻采工艺, 2017, 40(5):81-83. |
[11] | FAN Kaiyun, RONG Shuang, ZHOU Jin, et al. Application of electric fracturing pump in shale gas fracturing[J]. Drilling & Production Technology, 2017, 40(5):81-83. |
[12] | 吴汉川. 大型压裂装备应用问题解析及发展方向[J]. 石油机械, 2017, 45(12):53-57. |
[12] | WU Hanchuan. Issue analysis of large scale fracturing equipment application and its development trend[J] China Petroleum Machinery, 2017, 45(12):53-57. |
[13] | JACOBS T. New automated hydraulic fracturing tech cuts time and workforce needs[J]. Journal of Petroleum Technology, 2017, 69(5):32-33. |
[14] | 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械, 2016, 44(11):72-79. |
[14] | WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016, 44(11):72-79. |
[15] | SURJAATMADJA J B,. LOGAN T, HUNTER T H, et al. High-pressure, high-flow-rate stimulation equipment for shale fracture treatments[C]// High-pressure, high-flow-rate stimulation equipment for shale fracture treatments, 18-21 March, 2019, Manama, Bahrain. |
[16] | 刘克强, 王培峰, 贾军喜. 我国工厂化压裂关键地面装备技术现状及应用[J]. 石油机械, 2018, 46(4):101-106. |
[16] | LIU Keqiang, WANG Peifeng, JIA Junxi. Status and applications of surface equipment for factory fracturing in China[J]. China Petroleum Machinery, 2018, 46(4):101-106. |
[17] | 张斌, 李磊, 邱勇潮, 等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业, 2020, 40(5):50-57. |
[17] | ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natureal Gas Industry, 2020, 40(5):50-57. |
[18] | 高启国, 高银胜. 130BPM全电动混砂撬在页岩气压裂施工中的应用[J]. 中国石油和化工标准与质量, 2019, 39(24):131-132. |
[18] | GAO Qiguo, GAO Yinsheng. Application of 130BPM fully electric sand-mixing pry in shale gas fracturing[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(24):131-132. |
[19] | 田雨, 谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械, 2017, 45(4):94-97. |
[19] | TIAN Yu, XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4):94-97. |
[20] | 王江阳. HHE6000-02电动压裂系统研制[Z]. 四川宏华电气有限责任公司, 2017. |
[20] | WANG Jiangyang. Development of HHE 6000-02 electric fracturing system[Z]. Sichuan Honghua Electric Co. Ltd., 2017. |
[21] | 童征, 展恩强, 刘颖, 等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济, 2020, 28(7):53-62. |
[21] | TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7):53-62. |
[22] | 程强. 中国页岩气发展迎来2.0时代[N]. 中国石化报,2020-12-07(5) |
[22] | CHENG Qiang. China shale gas development ushered in the 2.0 era[N]. Sinopec News, 2020-12-07(5) |
[23] | 环境保护部, 国家质量监督检验检疫总局. 声环境质量标准:GB 3096—2008[S]. 北京: 中国环境科学出版社, 2008:5. |
[23] | Ministry of Environmental Protection of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standard for noise: GB 3096—2008[S]. Beijing: China Environmental Science Press, 2008:5. |
[24] | 省级温室气体清单编制指南(试行)[S]. 北京: 省级温室气体清单编制指南编写组. |
[24] | Guidelines for the preparation of provincial greenhouse gas inventories(trial)[S]. Beijing: Group for the preparation of guidelines for provincial greenhouse gas inventories. |
[25] | 石油化工生产企业CO2排放量计算方法:SH/T 5000—2011[S]. 北京: 中华人民共和国工业和信息化部, 2011. |
[25] | The calculation method of CO2 emissions for petrochemical production: SH/T 5000—2011[S]. Beijing: Ministry of Industry and Information Technology of the People's Republic of China , 2011. |
[26] | 张增年, 李华川, 郑家伟, 等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺, 2020, 43(2):41-44. |
[26] | ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technoligy development prospect of frature quipment[J]. Drilling & Production Technology, 2020, 43(2):41-44. |
/
〈 | 〉 |