Integration Evaluation and Development

New technology of dewatering gas recovery for CBM wells in southern Yanchuan Block, eastern margin of Ordos Basin

  • Yongping JIANG ,
  • Song YANG
Expand
  • Sinopec Linfen Coalbed Methane Branch, Linfen, Shanxi 041000, China

Received date: 2020-11-30

  Online published: 2021-06-24

Abstract

As a typical unconventional gas reservoir with low pressure, permeability and water cut, deep coalbed methane needs effective support fracturing to achieve good development effects, leading to large difference of liquid production in the whole life cycle of gas wells. Based on the comparison of coalbed methane recovery effect of different well types in Yanchuan South coalbed methane exploration and development block, it is considered that although the L-shaped horizontal well has the construction cost similar to that of three directional wells, but its production is higher and post-operation and maintenance cost is lower. It is more suitable for coalbed methane development in mountainous areas. By comparing the characteristics of different lifting processes, the combination of pumping unit and forced closed spring inclined well pump is optimized, and the drainage and gas recovery in the whole life cycle of L-shaped horizontal well is realized. In the gas wells with low liquid production, the technology of water drainage gas recovery has achieved good stimulation effects in the gas wells with small deviation, and high influence of liquid accumulation and pulverized coal. The existing mechanical production equipments can realize the efficient utilization of assets, save the cost of purchased materials, reduce the energy consumption index, and provide referential significance for the further drainage gas production in low liquid production wells.

Cite this article

Yongping JIANG , Song YANG . New technology of dewatering gas recovery for CBM wells in southern Yanchuan Block, eastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(3) : 384 -389 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.013

References

[1] 邹才能, 杨智, 何东博, 等. 常规—非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4):575-587.
[1] ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theroy, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4):575-587.
[2] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社,2014.
[2] ZOU Caineng, TAO Shizhen, HOU Lianhua, et al. Unconventional petroleum geology[M]. Beijing: Geology Press,2014.
[3] 张群, 冯三利, 杨锡禄. 试论我国煤层气的基本储层特点及开发策略[J]. 煤炭学报, 2001, 26(3):230-235.
[3] ZHANG Qun, FENG Sanli, YANG Xilu. Basic reservoir characteristics and development strategy of coalbed methane resource in China[J]. Journal of China Coal Society, 2001, 26(3):230-235.
[4] 吴雅琴, 邵国良, 徐耀辉, 等. 煤层气开发地质单元划分及开发方式优化——以沁水盆地郑庄区块为例[J]. 岩性油气藏, 2016, 28(6):125-133.
[4] WU Yaqin, SHAO Guoliang, XU Yaohui, et al. Geological unit division and development model optimization of coalbed methane: A case study from Zhenzhuang block in Qinshui Basin[J]. Lithologic Reservoirs, 2016, 28(6):125-133.
[5] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3):580-587.
[5] LEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3):580-587.
[6] 吴奇, 胥云, 张守良, 等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4):706-714.
[6] WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stiulation technology for unconventional reservoirs[J]. Acta Petrolei China, 2014, 35 (4):706-714.
[7] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5):874-887.
[7] XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5):874-887.
[8] AGHARAZI A. Determining maximum horizontal stress with microseismic focal mechanisms: Case studies in the Marcellus, Eagle Ford, Wolfcamp[C]// Determining maximum horizontal stress with microseismic focal mechanisms: Case studies in the Marcellus, Eagle Ford, Wolfcamp, 1-3 August, San Antonio, Texas, USA.
[9] WEDDLE P, GRIGGIN L, PEARSON C M. Mining the Bakken II: Pushing the envelope with extreme limited entry perforating[C]// Mining the Bakken II: Pushing the envelope with extreme limited entry perforating, The Woodlands, Texas, USA, 23-25, January, 2018.
[10] 张婷, 林生茂, 于洋, 等. 川东地区大斜度水平井排水采气技术优化[J]. 钻采工艺, 2020, 43(z1):53-56.
[10] ZHANG Ting, LIN Shengmao, YU Yang, et al. Optimization of drainage gas recovery technology for highly deviated horizontal wells in eastern Sichuan[J]. Drilling & Production Technology, 2020, 43(z1):53-56.
[11] 于姣姣, 李又武, 李乐忠, 等. 同心管射流泵排采工艺参数设计及应用[J]. 石油机械, 2020, 48(1):95-101.
[11] YU Jiaojiao, LI Youwu, LI Lezhong, et al. Design and application of drainage and gas recovery process parameters of concentric dual tubing jet pump[J]. China Petroleum Machinery, 2020, 48(1):95-101.
[12] 陈刚, 胡宗全, 张永贵, 等. 延川南区块煤层气富集高产的地质控制作用[J]. 天然气地球科学, 2016, 27(11):2093-2102.
[12] CHEN Gang, HU Zongquan, ZHANG Yonggui, et al. Study on the geological controlling effects on the enrichment and high-yield of coalbed methane in Yanchuannan area[J]. Natural Gas Geoscience, 2016, 27(11):2093-2102.
[13] 陈贞龙, 王烽, 陈刚, 等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6):80-84.
[13] CHEN Zhenlong, WANG Feng, CHEN Gang, et al. Study on enrichment law and development features of deep coalbed methane in South Yanchuan field[J]. Coal Science and Technology, 2018, 46(6):80-84.
[14] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1992:122-127.
[14] ZHOU Shining, LIN Boquan. The theory of gas flow and storage in coal seams[J]. Beijing: China Coal Industry Publishing House, 1992:122-127.
[15] 石军太, 李相方, 徐兵祥, 等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学, 2013, 43(12):1548-1557.
[15] SHI Juntai, LI Xiangfang, XU Bingxiang, et al. Review on desorption-diffusion-fow model of coal-bed methane[J]. Science China, 2013, 43(12):1548-1557.
[16] 李相方, 石军太, 杜希瑶, 等. 煤层气藏开发降压解吸气运移机理[J]. 石油勘探与开发, 2012, 39(2):203-211.
[16] LI Xiangfang, SHI Juntai, DU Xiyao, et al. Transport mechanism of desorbed gas in coalbed methane reservoirs[J]. Petroleum Exploration and Development, 2012, 29(2):203-211.
[17] KOPERNA G J, RIESTENBERG D. Carbon dioxide enhanced coalbed methane and storage: Is there promise?[C]// Paper SPE-126627-MS presented at the SPE International Conference on CO2 Capture, Storage, and Utilization, November 2-4, 2009, San Diego, California, USA .
[18] 秦义, 李仰民, 白建梅, 等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业, 2011, 31(11):22-25.
[18] QIN Yi, LI Yangmin, BAI Jianmei, et al. Technologies in the CBM production of wells in the southern Qinshui basin with high-rank coal beds[J]. Natural Gas Industry, 2011, 31(11):22-25.
[19] 朱庆忠, 杨延辉, 王玉婷, 等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业, 2017, 37(10):27-34.
[19] ZHU Qingzhong, YANG Yanhui, WANG Yuting, et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry, 2017, 37(10):27-34.
[20] 赵凌云, 易同生. 煤层气水平井井型结构分析及钻完井技术优化[J]. 煤炭科学技术, 2020, 48(3):221-226.
[20] ZHAO Lingyun, YI Tongsheng. Analysis on well type structure and optimization of assonciated drilling technology of CBM horizontal wells[J]. Coal Science and Technology, 2020, 48(3):221-226.
[21] 李红伟, 张斌. 织金区块浅层煤层气J形大位移水平井钻井技术[J]. 石油钻探技术, 2016, 44(2):46-50.
[21] LI Hongwei, ZHANG Bin. Drilling techniques in J-shaped extended reach horizontal wells in shallow coalbed methane reservoirs in Zhijin Blick[J]. Petroleum Drilling Techniques, 2016, 44 (2):46-50.
[22] 朱庆忠, 杨延辉, 王玉婷, 等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业, 2017, 37(10):27-33.
[22] ZHU Qingzhong, YANG Yanhui, WANG Yuting, et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry, 2017, 37(10):27-33.
[23] 刘新福, 吴建军, 綦耀光, 等. 煤层气井气体对有杆泵排采的影响[J]. 中国石油大学学报(自然科学版), 2011, 35(4):144-149.
[23] LIU Xinfu, WU Jianjun, QI Yaoguang, et al. Effect of gas on sucker rod pump for coalbed methane well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4):144-149.
Outlines

/