Specialist Forum

Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision

  • Yang LI ,
  • Wenhuan HUANG ,
  • Yong JIN ,
  • Yingfu HE ,
  • Zuhua CHEN ,
  • Yong TANG ,
  • Gongyi WU
Expand
  • 1. China petroleum and chemical corporation, Beijing 100728, China
    2. Chunliang Oil Production Plant, Sinopec Shengli Oilfield, Binzhou, Shandong 256500, China
    3. Sinopec Jiangsu Oilfield, Yangzhou, Jiangsu 225009, China
    4. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
    5. Research Institute of Exploration and Development, Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210031, China
    6. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    7. Taizhou Oil Production Plant, Sinopec East China Oil and Gas Company, Taizhou, Jiangsu 225300, China

Received date: 2021-10-28

  Online published: 2021-12-31

Abstract

CO2 flooding has the dual purpose of enhancing oil recovery(EOR) and carbon dioxide storage, and has a large development prospect. In particular, the need of carbon emission reduction gives a large space for the development of large-scale application of this technology. For Sinopec, the development history of CO2 flooding can be divided into three stages: single well stimulation, pilot test and comprehensive application. After more than 50 years of development, CO2 flooding mechanism and supporting technology have been relatively mature. According to the reservoir characteristics of Sinopec and three types of CO2 flooding, which are miscible drive, near miscible drive and immiscible drive, the screening standard of CO2 drive reservoir are established to clarify the mechanism of CO2 flooding in low permeability reservoir, tight reservoir, medium and high permeability reservoir. Taking three reservoirs of Subei Basin, Fu-3 member of Caoshe Oilfield, Fu-3 member in Hua-26 fault block, and Duo-1 member of Zhoucheng Oilfield, and Gao-89-1 block of Zhengli Zhuanggao Block in Bohai Bay Basin as examples, the actual development effect of typical blocks are summarized, showing that CO2 flooding is an important way to improve oil recovery efficiency. In order to solve the technical bottleneck of large-scale application of CO2 flooding in low permeability reservoirs and medium-high permeability reservoirs, the researches on oil displacement mechanism and gas injection effect should be further strengthened to promote the development of CCUS. It is of great significance to achieve “carbon peak” and “carbon neutral” and ensure national energy security.

Cite this article

Yang LI , Wenhuan HUANG , Yong JIN , Yingfu HE , Zuhua CHEN , Yong TANG , Gongyi WU . Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(6) : 793 -804 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.01

References

[1] MOHAN H, CAROLUS M, BIGLARBIGI K. The potential for additional carbon dioxide flooding projects in the United States[C]// Paper SPE-113975-MS presented at the SPE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, April 2008.
[2] JABLONOWSKI C, SINGH A. A survey of CO2-EOR and CO2 storage project costs[C]// Paper SPE-139669-MS presented at the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, Louisiana, USA, November 2010.
[3] 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216.
[3] QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development, 2015, 42(2):209-216.
[4] 俞凯, 刘伟, 陈祖华, 等. 陆相低渗油藏CO2混相驱技术[M]. 北京: 中国石化出版社, 2015.
[4] YU Kai, LIU Wei, CHEN Zuhua, et al. CO2 miscible flooding technology in continental low permeability reservoir[M]. Beijing: China Petrochemical Press, 2015.
[5] 李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势[J]. 油气藏评价与开发, 2019, 9(3):1-8.
[5] LI Shilun, TANG Yong, HOU Chengxi. Present situation and development trend of CO2 injection enhanced oil recovery technology[J]. Reservoir Evaluation and Development, 2019, 9(3):1-8.
[6] 陈祖华. 苏北盆地注CO2提高采收率技术面临的挑战与对策[J]. 油气藏评价与开发, 2020, 10(3):60-67.
[6] CHEN Zuhua. Challenges and countermeasures of EOR by CO2 injection in North Jiangsu Basin[J]. Reservoir Evaluation and Development, 2020, 10(3):60-67.
[7] 陈祖华. 低渗透油藏CO2驱油开发方式与应用[J]. 现代地质, 2015, 29(4):950-957.
[7] CHEN Zuhua. Development method and application of CO2 flooding in low permeability reservoirs[J]. Modern Geology, 2015, 29(4):950-957.
[8] 王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018, 32(5):63-65.
[8] WANG Haimei. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology & Engineering, 2018, 32(5):63-65.
[9] 李士伦, 郭平, 戴磊, 等. 发展注气提高采收率技术[J]. 西南石油学院学报, 2000, 22(3):41-45.
[9] LI Shilun, GUO Ping, DAI Lei, et al. Streathen gas injection for enhanced oil recovery[J]. Journal of Southwest Petroleum Institute, 2000, 22(3):41-45.
[10] 陈祖华, 吴公益, 钱卫明, 等. 苏北盆地复杂小断块油藏注CO2提高采收率技术及应用[J]. 油气地质与采收率, 2020, 27(1):152-162.
[10] CHEN Zuhua, WU Gongyi, QIAN Weiming. et al. EOR technology and application of CO2 injection for small complex fault block reservoirs in Subei Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):152-162.
[11] 陈祖华, 孙雷, 杨正茂, 等. 草舍泰州组油藏CO2混相驱效果及二次气驱可行性研究[J]. 油气藏评价与开发, 2019, 9(3):47-50.
[11] CHEN Zuhua, SUN Lei, YANG Zhengmao, et al. Study on the effect of CO2 miscible flooding and the feasibility of secondary gas flooding in Caoshe Taizhou formation reservoir[J]. Reservoir Evaluation and Development, 2019, 9(3):47-50.
[12] 王军. 低渗透油藏CO2吞吐选井条件探讨[J]. 油气藏评价与开发, 2019, 9(3):57-61.
[12] WANG Jun. Dicussion on well selection conditions of CO2 huff and puff in low permeability reservoirs[J]. Reservoir Evaluation and Development, 2019, 9(3):57-61.
[13] 陈祖华, 蒲敏, 杨春红, 等. CS油田CT复杂断块低渗透油藏CO2驱动态调整研究[J]. 石油天然气学报, 2012, 34(1):118-122.
[13] CHEN Zuhua, PU Min, YANG Chunhong, et al. Study on dynamic adjustment of CO2 flooding in CT complex fault block low permeability reservoir of CS Oilfield[J]. Journal of Petroleum and Natural Gas, 2012, 34(1):118-122.
[14] 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019, 6(1):107-114.
[14] JIA Kaifeng, JI Dongchao, GAO Jindong, et al. The exisiting state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019, 6(1):107-114.
[15] 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1):1-10.
[15] LI Yang. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):1-10.
[16] 王世璐, 王玉霞, 贾凯锋. 低渗透油藏岩心注CO2驱油效率物理模拟[J]. 非常规油气, 2019, 6(2):85-90.
[16] WANG Shilu, WANG Yuxia, JIA Kaifeng. Physical simulation of CO2 flooding efficiency in low permeability reservoir core[J]. Unconventional Oil & Gas, 2019, 6(2):85-90.
[17] 陈祖华, 孙雷, 杨正茂, 等. 苏北低渗透油藏CO2驱油开发模式探讨[J]. 西南石油大学学报(自然科学版), 2020, 42(3):97-106.
[17] CHEN Zuhua. Discussion on the development model of CO2 flooding in low permeability reservoir in North Jiangsu[J]. Journal of Southwest Petroleum University, 2020, 42(3):97-106.
[18] 李士伦, 孙雷, 陈祖华, 等. 再论CO2驱提高采收率油藏工程理念和开发模式的发展[J]. 油气藏评价与开发, 2020, 10(3):1-14.
[18] LI Shilun, SUN Lei, CHEN Zuhua, et al. Further discussion on reservoir engineering concept and development mode of CO2 flooding-EOR technology[J]. Reservoir Evaluation and Development, 2020, 10(3):1-14.
[19] 陈祖华. ZJD油田阜宁组大倾角油藏注CO2方式探讨[J]. 西南石油大学学报, 2014, 36(6):83-87.
[19] CHEN Zuhua. Studies on CO2 injection scenarios for large dip angle reservoir of Funing group in ZJD oilfield[J]. Journal of Southwest Petroleum University, 2014, 36(6):83-87.
[20] 邓瑞健, 田巍, 李中超, 等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019, 26(3):133-137.
[20] DENG Ruijiang, TIAN Wei, LI Zhongchao, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019, 26(3):133-137.
[21] GUI Xia, WANG Wei, GAO Qiang, et al. Measurement and correlation of high pressure phase equilibria for CO2+alkanes and CO2+crude oil systems[J]. Journal of Chemical Engineering Data, 2017, 62(11):3807-3822.
[22] 陈祖华, 汤勇, 王海妹, 等. CO2驱开发后期防气窜综合治理方法研究[J]. 岩性油气藏, 2014, 26(5):102-106.
[22] CHEN Zuhua, TANG Yong, WANG Haimei, et al. Study on the comprehensive treatment method of preventing gas channeling in the later stage of CO2 flooding[J]. Lithologic Reservoir, 2014, 26(5):102-106.
[23] 李承龙. 特低渗透油藏二氧化碳驱气窜影响因素及规律[J]. 特种油气藏, 2018, 25(3):82-86.
[23] LI Chenglong. Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(3):82-86.
[24] 曹绪龙, 吕广忠, 王杰, 等. 胜利油田CO2驱油技术现状及下步研究方向[J]. 油气藏评价与开发, 2020, 10(3):51-59.
[24] CAO Xulong, LYU Guangzhong, WANG Jie, et al. Present situation and further research direction of CO2 flooding technology in Shengli Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(3):51-59.
[25] 张世明. 低渗透油藏CO2驱气窜通道识别方法[J]. 油气地质与采收率, 2020, 27(1):101-106.
[25] ZHANG Shiming. Study on identification method for gas channeling of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):101-106.
[26] 陈祖华, 俞凯, 刘伟, 等. CO2混相驱注采特征及开发效果初探——以苏北草舍油田为例[J]. 油气藏评价与开发, 2011, 1(1-2):37-41.
[26] CHEN Zuhua, YU Kai, LIU Wei, et al. CO2 miscible flooding and production characteristics and preliminary discussion about the development effects——taking Caoshe oilfield in northern Jiangsu area as an example[J]. Reservoir Evaluation and Development, 2011, 1(1-2):37-41.
[27] 李超, 陈祖华, 胡世莱, 等. 新疆油田JL区块特低渗透油藏CO2-化学剂复合吞吐技术应用研究[J]. 油气地质与采收率, 2021, 28(3):134-141.
[27] LI Chao, CHEN Zuhua, HU Shilai, et al. Application of CO2-chemical agent composite huff and puff in extra-low permeability reservoir of Block JL in Xinjiang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3):134-141.
[28] 牛保伦,. 边底水气藏注二氧化碳泡沫控水技术研究[J]. 特种油气藏, 2018, 25(3):126-129.
[28] NIU Baolun. Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J]. Special Oil & Gas Reservoirs, 2018, 25(3):126-129.
Outlines

/