Comprehensive Research

Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model

  • Tianyu FU ,
  • Qiguo LIU ,
  • Xuefang CEN ,
  • Longxin LI ,
  • Xian PENG
Expand
  • 1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Ningbo China Resources Xingguang Gas Co., LTD., Ningbo, Zhejiang 315000, China
    3. Research Institute of Exploration and Development, CNPC Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China

Received date: 2020-08-14

  Online published: 2021-12-31

Abstract

Normalized Pressure Integral(NPI) Production Analysis is a kind of modern production decline analysis method which defines new parameters by integral. It can not only reflect the pseudo-steady state flow stage influenced by outer boundary, but also can reflect the unsteady state flow stage. In order to study the NPI production decline analysis method of carbonate reservoir, we established triporate-uniphase parallel inter-porosity flow model. In this model, fracture is the main flow channel and inter-porosity flow happens from cave to fracture and matrix to fracture. The bottom hole pseudopressure solution with considering the effect of skin factor of this model was obtained by Laplace transform and Duhamel principle. The NPI method curves were plotted by using normalized pressure integral method and Stehfest numerical inversion. And the curves can reflect the production performance of this model accurately. The storage ratio, inter-porosity flow coefficient, and dimensionless outer boundary radius were chosen to be sensibility parameter for sensibility analysis. The result shows that the storage ratio mainly influences the depth of depression on derivative curve and the inter-porosity flow coefficient mainly influences the time when inter-porosity flow stages happen. The skin factor just influences the dimensionless pseudopressure and dimensionless pseudopressure integral curves, while the dimensionless outer boundary radius will also influence the unsteady state flow stage of derivative of dimensionless pseudopressure integral curve.

Cite this article

Tianyu FU , Qiguo LIU , Xuefang CEN , Longxin LI , Xian PENG . Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model[J]. Petroleum Reservoir Evaluation and Development, 2021 , 11(6) : 905 -910 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.016

References

[1] BLASINGAME T A, JOHNSTON J L, LEE W J. Type-curve analysis using the pressure integral method[C]// Paper SPE-18799-MS presented at the SPE California Regional Meeting, Bakersfield, California, April 1989.
[2] 张倩倩. 产量递减分析方法简评[J]. 油气地球物理, 2013, 11(3):41-44.
[2] ZHANG Qianqian. A brief review of production decline analysis methods[J]. Petroleum Geophysics, 2013, 11(3):41-44.
[3] CLARKSON C R, BEIERLE J J. Integration of microseismic and other post-fracture surveillance with production analysis: A tight gas study[J]. Journal of Natural Gas Science and Engineering, 2011, 3(2):382-401.
[4] 刘晓华, 邹春梅, 姜艳东, 等. 现代产量递减分析基本原理与应用[J]. 天然气工业, 2010, 30(5):50-54.
[4] LIU Xiaohua, ZOU Chunmei, JIANG Yandong, et al. Theory and application of modern production decline analysis[J]. Natural Gas Industry, 2010, 30(5):50-54.
[5] 孙召勃. 水平井及压裂水平井现代产量递减分析方法研究及软件研制[D]. 青岛:中国石油大学(华东), 2015.
[5] SUN Zhaobo. Research on horizontal well and fractured horizontal well advanced production dynamics analysis method and software development[D]. Qingdao: China University of Petroleum(East China), 2015.
[6] 祝晓林, 郭林, 朱琴, 等. NPI产量递减分析在海上油田试井中的应用[J]. 特种油气藏, 2016, 23(4):112-114.
[6] ZHU Xiaolin, GUO Lin, ZHU Qin, et al. Application of NPI production decline analysis in well test of offshore oil field[J]. Special Oil Gas Reservoirs, 2016, 23(4):112-114.
[7] 肖翠. 现代产量递减分析法在鄂尔多斯盆地延川南煤层气田中的应用[J]. 天然气工业, 2018, 38(1):102-106.
[7] XIAO Cui. Application of modern production decline analysis method in the South Yanchuan coalbed methane field of Ordos Basin[J]. Natural Gas Industry, 2018, 38(1):102-106.
[8] 刘宝华, 杨东. 现代产量递减分析方法求取安达凹陷试采气井储层参数[J]. 油气井测试, 2019, 28(6):59-65.
[8] LIU Baohua, YANG Dong. Using modern production decline analysis to obtain the gas well properties in Anda sag[J]. Well Testing, 2019, 28(6):59-65.
[9] 崔彬, 付玉通. 煤层气井现代产量递减分析应用研究[J]. 煤炭科学技术, 2017, 45(3):101-104.
[9] CUI Bin, FU Yutong. Applied study on modern gas production decrease analysis of coalbed methane well[J]. Coal Science and Technology, 2017, 45(3):101-104.
[10] 陈金勇, 李振鹏. 碳酸盐岩储层的主要影响因素[J]. 海洋地质动态, 2010, 26(4):19-25.
[10] CHEN Jinyong, LI Zhenpeng. The main influencing factors of carbonate reservoir[J]. Marine Geology Letters, 2010, 26(4):19-25.
[11] CLOSMANN P J. Aquifer model for fissured reservoirs[J]. Society of Petroleum Engineers Journal, 1975, 10(5):385-398.
[12] ABDASSAH D, ERSHAGHI I. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE Formation Evaluation, 1986, 1(2):113-127.
[13] FERNANDO R, VICTOR A O, HEBER C L. Well test characterization of small and large-scale secondary porosity in naturally fractured reservoirs[J]. SPE Journal, 2004, 18(4):193-202.
[14] 张文昌, 王海涛. 弱底水碳酸盐岩礁相气藏压裂井试井模型研究[J]. 特种油气藏, 2020, 27(3):93-98.
[14] ZHANG Wenchang, WANG Haitao. Fractured Well Test Model of Carbonate Reef Gas Reservoir with Weak Bottom-Aquifer[J]. Special Oil & Gas Reservoirs, 2020, 27(3):93-98.
[15] 杜鑫, 卢志炜, 李冬梅, 等. 缝洞型油藏波动和流动耦合模型井底压力分析[J]. 应用数学与力学, 2019, 40(4):355-374.
[15] DU Xin, LU Zhiwei, LI Dongmei, et al. Pressure transient analysis of the fractured vuggy reservoir model coupling oil flow and wave propagation[J]. Applied Mathematics and Mechanics, 2019, 40(4):355-374.
[16] 马奎前, 郜益华, 孙召勃. 三重介质复合油藏椭圆流试井模型[J]. 断块油气田, 2017, 24(1):63-68.
[16] MA Kuiqian, GAO Yihua, SUN Zhaobo. Well test model of triple media composite reservoir based on elliptic flow[J]. Fault-Block Oil & Gas Field, 2017, 24(1):63-68.
[17] 魏聪, 张承泽, 陈东, 等. 塔里木盆地克深2气藏断层、裂缝、基质“三重介质”渗流及开发机理[J]. 天然气地球科学, 2019, 30(12):1684-1693.
[17] WEI Cong, ZHANG Chengze, CHEN Dong, et al. Seepage characteristics and development mechanism characterized by faults-fracture-pores "triple medium" in Keshen 2 gas reservoirs, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(12):1684-1693.
[18] 刘彪, 赫文豪, 李硕文, 等. 针对易漏砂岩地层防井漏材料粒径优化设计[J]. 石油机械, 2020, 48(7):19-24.
[18] LIU Biao, HE Wenhao, LI Shuowen, et al. Optimization of particle sizes of plugging materials for sandstone formations[J]. China Petroleum Machinery, 2020, 48(7):19-24.
[19] 罗二辉, 胡永乐, 王磊, 等. 缝洞型低渗透碳酸盐岩油藏产量递减曲线分析[J]. 大庆石油学院学报, 2012, 36(2):86-90.
[19] LUO Erhui, HU Yongle, WANG Lei, et al. Production decline curve analysis of fracture-cavity carbonate reservoirs with low permeability[J]. Jouranl of Daqing Petroleum Institute, 2012, 36(2):86-90.
[20] AL-HUSSAINY R, RAMEY H J, CRAWFORD P B. The flow of real gases through porous media[J]. Journal of Petroleum Technology, 1966, 18(5):624-636.
[21] 孙贺东. 油气井现代产量递减分析方法及应用[M]. 北京: 石油工业出版社, 2013.
[21] SUN Hedong. Advanced production decline analysis and application[M]. Beijing: Petroleum Industry Press, 2013.
Outlines

/