Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 1: 10 - 28
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.01.002
Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou
Received date: 2021-10-09
Online published: 2022-03-24
As a systematic study of the Wufeng-Longmaxi Formation was carried out by paleontological comparison, thin section identification, scanning electron microscopy and Nitrogen Adsorption Method in Qilong Village outcrop, Xishui, Guizhou Province, the following main insights are obtained: ① The Wufeng-Longmaxi Formation in Qilong Village outcrop is complete, and is conformable with overlying Silurian Shiniulan Formation and the underlying Ordovician Jiancaogou Formation, with 12 graptolite biozones developed and without unconformity; ② Based on a variety of sedimentary fabric features, six major shale lithofacies in the Wufeng-Longmaxi Formation are determined; ③ The quartz content of the Wufeng Longmaxi Formation decreases, while clay minerals increase gradually from the bottom to the top in Qilong Village outcrop, which shows the content of brittle minerals decreases, and a decrease of fracability of the shale from the bottom to the top; ④ The organic matter types of Wufeng-Longmaxi Formation in Qilong Village outcrop are mainly of type Ⅰ and type Ⅱ1, and the high TOC shale is mainly distributed in the Wufeng and lower Longmaxi Formation; ⑤ There is relatively low paleoproductivity of the Wufeng-Longmaxi Formation in Qilong Village outcrop. The high quality black shale was deposited in anoxic-dysoxic conditions, and high content of organic matter benefits from the high burial efficiency of organic matter; ⑥ The organic pores of the Wufeng-Longmaxi Formation in Qilong Village outcrop are mainly distributed in Wufeng and lower Longmaxi Formation, while organic pores were not developed in the upper member of Longmaxi Formation or Guanyinqiao member. The abundance of the small pores vertically decreases with stratigraphy upwards and The abundance of the large pore increases with stratigraphy upwards; ⑦ The natural gas adsorption capacity of the Wufeng-Longmaxi Formation in Qilong Village outcrop is a minimum of 1.62 m3/t, a maximum of 2.8 m3/t, and an average value of 2.13 m3/t. This shows that the larger the TOC value is, the stronger the corresponding adsorption capacity will be, and indicates organic matter content plays a decisive role in gas-bearing capacity of organic-rich shales.
Shugen LIU , Bo RAN , Yuehao YE , Shiyu WANG , Di YANG , Chao LUO , Yuyue HAN , Jinmin SONG , Xuan ZHANG . Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(1) : 10 -28 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.002
[1] | 杨迪, 刘树根, 单钰铭, 等. 四川盆地东南部习水地区上奥陶统—下志留统泥页岩裂缝发育特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5):543-553. |
[1] | YANG Di, LIU Shugen, SHAN Yuming, et al. Fracture characteristics of shale in Upper Ordovician-Lower Silurian in Xishui Area, Southeast of Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5):543-553. |
[2] | 王世玉, 刘树根, 孙玮, 等. 黔中隆起北部上奥陶统—下志留统页岩特征[J]. 成都理工大学学报(自然科学版), 2012, 39(6):599-605. |
[2] | WANG Shiyu, LIU Shugen, SUN Wei, et al. Features of the shale from Upper Ordovician-Lower Silurian in the north of Middle Guizhou uplift, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(6):599-605. |
[3] | 袁海峰. 四川盆地震旦系—下古生界成藏机理[D]. 成都:成都理工大学, 2008. |
[3] | YUAN Haifeng. Accumulation mechanism of Sinian-Lower Paleozoic Reservoirs in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008. |
[4] | LEE J S, CHAO Y T. Geology of the Gorge district of the Yangtze(from Ichang to Tzekuei)with special reference to the development of the Gorges[J]. Bulletin of the Geological Society of China, 1924, 3:351-391. |
[5] | SUN Y C. Graptolite-bearing strata of China[J]. Bulletin of the Geological Society of China, 1931, 10(1):291-300. |
[6] | 穆恩之. 论五峰页岩[J]. 古生物学报, 1954, 2(2):153-170. |
[6] | MU Enzhi. On the Wufeng shale[J]. Acta Palaeontologica Sinica, 1954, 2(2):153-170. |
[7] | 汪啸风. 中国奥陶纪古地理重建及其沉积环境与生物相特征[J]. 古生物学报, 1989, 28(2):234-248. |
[7] | WANG Xiaofeng. Paleogeographic reconstruction of Ordovician in China and characteristics of its sedimentary environment and biofacies[J]. Acta Palaeontologica Sinica, 1989, 28(2):234-248. |
[8] | 汪啸风, 曾庆銮, 周天梅, 等. 再论奥陶系与志留系界线的划分与对比[J]. 地球学报, 1986, 8(1):157-175. |
[8] | WANG Xiaofeng, ZENG Qingluan, ZHOU Tianmei, et al. Rediscussion on the division and correlation of the Ordovician-Silurian boundary[J]. Bulletin of the Chinese Academy of Geological Sciences, 1986, 8(1):157-175. |
[9] | 陈旭, 戎嘉余, 樊隽轩, 等. 扬子区奥陶纪末赫南特亚阶的生物地层学研究[J]. 地层学杂志, 2000, 24(3):173-175. |
[9] | CHEN Xu, RONG Jiayu, FAN Junxuan, et al. Biostratigraphy of the Hernantian Substage in the Yangtze region[J]. Journal of Stratigraphy, 2000, 24(3) : 173-175. |
[10] | CHEN X, RONG J Y, MITCHELL C E, et al. Latest Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China with a global correlation[J]. Geological Magazine, 2000, 137:623-650. |
[11] | CHEN X, RONG J Y, FAN J X, et al. The global boundary stratotype section and point(GSSP) for the base of the Hirnantian Stage(the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3):183-196. |
[12] | 樊隽轩, MELCHIN M J, 陈旭, 等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学:地球科学, 2012, 42(1):130-139. |
[12] | FAN Junxuan, MELCHIN M J, CHEN Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Scientia Sinica(Terrae), 2012, 42(1):130-139. |
[13] | 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4):351-358. |
[13] | CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4):351-358. |
[14] | 陈旭, 樊隽轩, 王文卉, 等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学, 2017, 47(6):720-732. |
[14] | CHEN Xu, FAN Junxuan, WANG Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J]. Scientia Sinica(Terrae), 2017, 47(6):720-732. |
[15] | 秦建中, 刘宝泉, 国建英, 等. 关于碳酸盐烃源岩的评价标准[J]. 石油实验地质, 2004, 8(3):281-286. |
[15] | QIN Jianzhong, LIU Baoquan, GUO Jianying, et al. Discussion on the evaluation standards of carbonate source rocks[J]. Petroleum Geology & Experiment, 2004, 8(3):281-286. |
[16] | GINGELE F, DAHMKE A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments[J]. Paleoceanography, 1994, 9(1):151-168. |
[17] | PAYTAN A, MOORE W S, KASTNER M. Sedimentation rate as determined by 226Ra activity in marine barite[J]. Geochimica et Cosmochimica Acta, 1996, 60(22):4313-4319. |
[18] | BERNSTEIN R E, BYRNE R H. Acantharians and marine barite[J]. Marine Chemistry, 2004, 86(1-2):45-50. |
[19] | MCMANUS J, WILLIAM M B, SILKE S. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential[J]. Geochim Cosmochim Acta, 2006, 70:4643-4662. |
[20] | SIEBERT C, MCMANUS J, BICE A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth Planet Science Letters, 2006, 241(3-4):723-733. |
[21] | ZHOU L, HUANG J H, ARCHER C, et al. Molybdenum isotope composition from Yangtze Block continental margin and its indication to organic burial rate[J]. Frontiers of Earth Science in China, 2007, 1:417-424. |
[22] | 殷鸿福, 谢树成, 颜佳新, 等. 海相碳酸盐烃源岩评价的地球生物学方法[J]. 中国科学:地球科学, 2011, 41(7):895-909. |
[22] | YIN Hongfu, XIE Shucheng, YAN Jiaxin, et al. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon[J]. Scientia Sinica(Terrae), 2011, 41(7):895-909. |
[23] | JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129. |
[24] | KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11):995-998. |
[25] | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79:848-861. |
[26] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938. |
[27] | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. |
[28] | SCHIEBER J. Shale microfabrics and pore development: an overview with emphasis on the importance of depositional processes[J]. Recovery, 2011: 1-4. |
[29] | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian new Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97:1621-1643. |
[30] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96:1071-1098. |
[31] | ROUQUEROL F, ROUQUEROL J, SING K. Adsorption by powders and porous solids: Principles, methodology and applications[M]. San Diego: Academic Press, 1999. |
/
〈 | 〉 |