Shale Gas

Sedimentary characteristics and favorable facies of Lower Cambrian Shale in the northern margin of Mount Daba: A case study of Maoba Outcrop in Ziyang

  • Ye ZHANG ,
  • Chuan YU ,
  • Zhiping ZHANG ,
  • Guodong WEI ,
  • Hualian ZHANG
Expand
  • 1. National Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    2. Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
    3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2021-03-22

  Online published: 2022-03-24

Abstract

The drilling of Lower Cambrian shale gas in the northern margin of Mount Daba shows good prospect. A set of dark shale strata are generally developed in the lower Cambrian in this area, but the stratigraphic heterogeneity is strong, and the sedimentary facies change obviously in the region. It is helpful for the further exploration and development to the study shale sedimentary characteristics of the Lower Cambrian in this area and analyze its influence on the differential enrichment of organic matter. On the basis of outcrop section in Maoba of Ziyang and experimental data, the researches are carried out from three aspects: the division and correlation of sedimentary facies, the analysis of sedimentary mode and the analysis of favorable sedimentary facies zones. The Lower Cambrian in the study area can be divided into four sedimentary subfacies: sub abyssal rifting trough basin facies, deep water shelf facies, shallow water shelf facies, and platform edge slope facies. Longitudinally, the water body changes from deep to shallow, and the contents of carbonaceous and siliceous gradually decrease, while the contents of clayey and carbonate gradually increase. The dark mud shale developed in the lower Cambrian Lujiaping Formation deep water shelf facies in Langao-Zhenping stratigraphic district has the larger thickness and higher content of total organic carbon and brittle minerals, which is a favorable sedimentary facies belt for the development of high-quality shale.

Cite this article

Ye ZHANG , Chuan YU , Zhiping ZHANG , Guodong WEI , Hualian ZHANG . Sedimentary characteristics and favorable facies of Lower Cambrian Shale in the northern margin of Mount Daba: A case study of Maoba Outcrop in Ziyang[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(1) : 107 -118 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.009

References

[1] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5):1-13.
[1] FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(5):1-13.
[2] 熊国庆, 王剑, 李园园, 等. 大巴山地区早古生代黑色岩系岩相古地理及页岩气地质意义[J]. 古地理学报, 2017, 19(6):965-986.
[2] XIONG Guoqing, WANG Jian, LI Yuanyuan, et al. Lithofacies paleogeography of the Early Paleozoic black rock series in Dabashan region and their shale-gas geological significance[J]. Journal of Paleogeography, 2017, 19(6):965-986.
[3] 刘劲松, 邹先武, 段其发, 等. 北大巴山镇坪地区早寒武世硅质岩的地球化学特征及成因[J]. 地质与勘探, 2014, 50(4):725-734.
[3] LIU Jinsong, ZOU Xianwu, DUAN Qifa, et al. Geo-chemical characteristics and origin of the lower Cambrian siliceous rocks from Zhenping area in north Daba Mountain[J]. Geology and Exploration, 2014, 50(4):725-734.
[4] 龙鹏宇, 张金川, 李玉喜, 等. 重庆及周缘地区下古生界页岩气资源潜力[J]. 天然气工业, 2009, 28(12):125-129.
[4] LONG Pengyu, ZHANG Jinchuan, LI Yuxi, et al. Potentials of the Lower Palaeozoic shale gas resources in Chongqing and its adjacent areas[J]. Natural Gas Industry, 2009, 28(12):125-129.
[5] 刘树根, 徐国盛, 徐国强, 等. 四川盆地天然气成藏动力学初探[J]. 天然气地球科学, 2004, 15(4):323-330.
[5] LIU Shugen, XU Guosheng, XU Guoqiang, et al. Primary study on the dynamics of natural gas pools in Sichuan basin, China[J]. Natural Gas Geoscience, 2004, 15(4):323-330.
[6] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653.
[6] ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6):641-653.
[7] 聂海宽, 张金川, 包书景, 等. 页岩气成藏体系研究——以四川盆地及其周缘下寒武统为例[J]. 西安石油大学学报:自然科学版, 2012, 27(3):8-14.
[7] NIE Haikuan, ZHANG Jinchuan, BAO Shujing, et al. Study on the accumulation systems of shale gas: Taking the lower Cambrian in Sichuan Basin and its periphery as an example[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2012, 27(3):8-14.
[8] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6):17-23.
[8] HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6):17-23.
[9] 余川, 曾春林, 周洵, 等. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6):853-865.
[9] YU Chuan, ZENG Chunlin, ZHOU Xun, et al. Tectonic preservation unit division and zoning evaluation of shale gas in the Lower Cambrian of Daba mountain thrust belt[J]. Natural Gas Geoscience, 2018, 29(6):853-865.
[10] 魏国齐, 杨威, 刘满仓, 等. 四川盆地大气田分布、主控因素与勘探方向[J]. 天然气工业, 2019, 39(6):1-12.
[10] WEI Guoqi, YANG Wei, LIU Mancang, et al. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6):1-12.
[11] 余川, 汪生秀, 汪威, 等. 大巴山北缘鲁家坪组变质作用及其对页岩气储层的影响[J]. 地质学报, 2020, 94(11):3461-3470.
[11] YU Chuan, WANG Shengxiu, WANG Wei, et al. The metamorphism of the Lujiaping Formation at the northern Daba mountain and its influence on shale gas reservoirs[J]. Acta Geologica Sinica, 94(11):3461-3470.
[12] 张志平, 方光建, 曾春林, 等. 渝东北下寒武统页岩气储层特征研究[J]. 西北地质, 2017, 50(4):209-214.
[12] ZHANG Zhiping, FANG Guangjian, ZENG Chunlin, et al. The research on reservoir characteristics of Lower Cambrian Shale Gas in Northeast Chongqing[J]. Northwestern Geology, 2017, 50(4):209-214.
[13] 杨佳佳, 孙玮琳, 徐学敏, 等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11):3515-3522.
[13] YANG Jiajia, SUN Weiling, XU Xuemin, et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11):3515-3522.
[14] 张光荣, 聂海宽, 唐玄, 等. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用——以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 天然气地球科学, 2021, 32(6):888-898.
[14] ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore: Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2021, 32(6):888-898.
[15] 汪泽成, 赵文智, 徐安娜, 等. 四川盆地北部大巴山山前带构造样式与变形机制[J]. 现代地质, 2006, 20(3):429-435.
[15] WANG Zecheng, ZHAO Wenzhi, XU Anna, et al. Structure styles and their deformation mechanisms of Dabashan foreland thrust belt in the North of Sichuan Basin[J]. Geoscience, 2006, 20(3):429-435.
[16] 潘商, 徐啸, 郭良辉, 等. 四川盆地—大巴山结合带地壳构造特征: 深反射地震约束的重磁解释[J]. 地球物理学进展, 2020, 35(4):1292-1298.
[16] PAN Shang, XU Xiao, GUO Lianghui, et al. Crustal structure of Daba Shan and adjacent terranes revealed from high-resolution deep seismic-reflection profiling and potential field modelling[J]. Progress in Geophysics, 2020, 35(4):1292-1298.
[17] 李智武, 刘树根, 罗玉宏, 等. 南大巴山前陆冲断带构造样式及变形机制分析[J]. 大地构造与成矿学, 2006, 30(3):294-304.
[17] LI Zhiwu, LIU Shugen, LUO Yuhong, et al. Structural style and deformational mechanism of southern Dabashan foreland fold-thrust belt in central China[J]. Geotectonica et Metallogenia, 2006, 30(3):294-304.
[18] 汪泽成, 邹才能, 陶士振, 等. 大巴山前陆盆地形成及演化与油气勘探潜力分析[J]. 石油学报, 2004,(6):23-28.
[18] WANG Zecheng, ZOU Caineng, TAO Shizhen, et al. Analysis on tectonic evolution and exploration potential in Dabashan foreland basin[J]. Acta Petrolei Sinica, 2004, (6):23-28.
[19] 王忠诚, 范德廉, 陈锦石. 大巴山下寒武统黑色岩系中毒重石矿床的成因探讨[J]. 地质科学, 1992,(3):237-248.
[19] WANG Zhongcheng, FAN Delian, CHEN Jinshi. Origin of witherite ore deposits in early Cambrian Daba mountain black shale series[J]. Scientia Geologica Sinica, 1992, (3):237-248.
[20] 吕志成, 刘丛强, 刘家军, 等. 北大巴山下寒武统毒重石矿床赋矿硅质岩地球化学研究[J]. 地质学报, 2004, 78(3):390-406.
[20] LYU Zhicheng, LIU Congqiang, LIU Jiajun, et al. Geochemical studies on the lower Cambrian Witherite-bearing Cherts in the Northern Daba Mountains[J]. Acta Geologica Sinica, 2004, 78(3):390-406.
[21] 雒昆利, 谭见安, 王五一, 等. 大巴山区早古生代地层和石煤中硒的化学活动性的初步研究[J]. 环境科学学报, 2002, 22(1):86-91.
[21] LUO Kunli, TAN Jianan, WANG Wuyi, et al. Chemical mobility of selenium in early Paleozoic rock and stone coal in Daba Mountain, South Qinling[J]. Acta Scientiae Circumstantiae, 2002, 22(1):86-91.
[22] 张林, 魏国齐, 李熙喆, 等. 四川盆地震旦系——下古生界高过成熟烃源岩演化史分析. 天然气地球科学, 2007, 18(5):726-731.
[22] ZHANG Lin, WEI Guoqi, LI Xizhe, et al. The thermal history of Sinian-lower Palaeozic high/over Mature source rock in Sichuan basin[J]. Natural Gas Geoscience, 2007, 18(5):726-731.
[23] 余川, 聂海宽, 曾春林, 等. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响[J]. 地质学报, 2014, 88(7):1311-1320.
[23] YU Chuan, NIE Haikuan, ZENG Chunlin, et al. Shale reservoir space characteristics and the effect on gas content in lower Palaeozoic Erathem of the Eastern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(7):1311-1320.
[24] 焦伟伟, 方光建, 汪生秀, 等. 渝东南地区下古生界页岩含气性差异关键控制因素[J]. 煤炭学报, 2019, 44(6):1786-1794.
[24] JIAO Weiwei, FANG Guangjian, WANG Shengxiu, et al. Key control factor for the gas-bearing properties difference of lower Paleozoic shale in southeast Chongqing[J]. Journal of China Coal Society, 2019, 44(6):1786-1794.
Outlines

/