Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 2: 320 - 328
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.02.007
Physical properties of water-bearing tight sandstone reservoir for improving permeability by thermal stimulation
Received date: 2021-11-24
Online published: 2022-05-07
The pore throat of tight sandstone reservoir block is narrow, and during the whole process of gas reservoir development, the water phase trapping damage is easy to prone, which restrict the development process of tight gas. The field test and laboratory experimental study have proved that the heat treatment technology for reservoirs can remove this damage and increase the permeability, but it has not been popularized and applied because of the unclear reservoir physical properties. Therefore, typical tight sandstone cores in Kuqa Depression, Huimin Depression and Jidong Depression are selected in order to simulate the fracture surface where heat treatment fracturing fluid stays or the near-wellbore zone where water phase gathers in the production process. A thermal shock experiment is carried out with 3 % KCL solution completely saturated experimental cores, the permeability of tight sandstone with different reservoir quality coefficient RQI before and after thermal shock is tested, and the relationship between the reservoir quality coefficient RQI and the increasing permeability is analyzed. The researches show that the permeability of tight sandstone samples does not change obviously when heated from room temperature to 100 ℃, but decreases slightly when heated to 200 ℃, and increases by 200 %~500 % when heated to 300~400 ℃, but the permeability of some samples does not change obviously, which is related to the reservoir quality coefficient RQI of the samples. The critical value of quality coefficient of water-bearing tight sandstone reservoir suitable for thermal surge permeability is 0.25. When RQI value is less than 0.25, the thermal surge permeability amplitude of rock samples is monotonically decreasing with RQI value. When RQI value is constant and heat shock temperature is greater than 200 ℃, the higher the temperature, the better the effect of thermal surge infiltration.
Lijun YOU , Yang WANG , Yili KANG , Jirui TANG , Jiang LIU , Dongsheng YANG . Physical properties of water-bearing tight sandstone reservoir for improving permeability by thermal stimulation[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(2) : 320 -328 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.02.007
[1] | 康毅力, 罗平亚. 中国致密砂岩气藏勘探开发关键工程技术现状与展望[J]. 石油勘探与开发, 2007, 34(2):239-245. |
[1] | KANG Yili, LUO Pingya. Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J]. Petroleum Exploration and Development, 2007, 34(2): 239-245. |
[2] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. |
[2] | ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenge and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. |
[3] | 游利军, 谢本彬, 杨建, 等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12):61-69. |
[3] | YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3):61-69. |
[4] | JAMALUDDIN A K M, HAMELIN M, HARKE K, et al. Field testing of the formation heat treatment process[C]// Paper PETSOC-96- 88 presented at the Annual Technical Meeting, Calgary, Alberta, Canada, June 1996. |
[5] | JAMALUDDIN A K M, VANDAMME L M, NAZARKOT W, et al. Heat treatment for clay-related near wellbore formation damage[J]. Canadian Petroleum Technology, 1998, 37(1): 43-62. |
[6] | 康毅力, 杨东升, 游利军, 等. 富有机质页岩高温热激增渗效果实验评价方法[J]. 天然气地球科学, 2021, 32(1):86-97. |
[6] | KANG Yili, YANG Dongsheng, YOU Lijun, et al. Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation[J]. Natural Gas Geoscience, 2021, 32(1): 86-97. |
[7] | 游利军, 康毅力. 热处理对致密岩石物理性质的影响[J]. 地球物理学进展, 2009, 24(5):1850-1854. |
[7] | YOU Lijun, KANG Yili. Effects of thermal treatment on physical property of tight rocks[J]. Progress in Geophysics, 2009, 24(5): 1850-1854. |
[8] | 陈明君, 康毅力, 游利军. 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学, 2013, 24(6):1226-1231. |
[8] | CHEN Mingjun, KANG Yili, YOU Lijun. Advantages in formation heat treatment to enhance permeability in tight reservoir[J]. Natural Gas Geoscience, 2013, 24(6): 1226-1231. |
[9] | WANG H C, REZAEE R, SAEEDI A, et al. Numerical modelling of microwave heating treatment for tight gas sand reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 152: 495-504. |
[10] | 赵阳升, 万志军, 张渊, 等. 岩石热破裂与渗透性相关规律的试验研究[J]. 岩石力学与工程学报, 2010, 29(10):1970-1976. |
[10] | ZHAO Yangsheng, WAN Zhijun, ZHANG Yuan, et al. Experimental study of related laws of rock thermal cracking and permeability[J]. Chinese Journal of Rock mechanics and Engineering, 2010, 29(10): 19701-1976. |
[11] | 邵天琛. 高温电加热致密砂岩致裂机理研究[D]. 成都:西南石油大学, 2019. |
[11] | SHAO Tianchen. Study on cracking mechanism of dense sandstone by high-temperature electric heating[D]. Chengdu: Southwest Petroleum University, 2019. |
[12] | 游利军, 李鑫磊, 康毅力, 等. 含水富有机质页岩重复升温热激增渗实验[J]. 西南石油大学学报(自然科学版), 2021, 43(1):120-132. |
[12] | YOU Lijun, LI Xinlei, KANG Yili, et al. An experimental study on cyclical thermal stimulation to enhance permeability of water-bearing organic-rich shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1):120-132. |
[13] | 张龙海, 刘忠华, 周灿灿, 等. 低孔低渗储集层岩石物理分类方法的讨论[J]. 石油勘探与开发, 2008, 35(6):763-768. |
[13] | ZHANG Longhai, LIU Zhonghua, ZHOU Cancan, et al. A method for petrophysical classification of low porosity and low permeability reservoirs[J]. Petroleum Exploration and Development, 2008, 35(6): 763-768. |
[14] | KEANEY M G, JONES C, MEREDITH P, et al. Thermal damage and the evolution of crack connectivity and permeability in ultra-low permeability rocks[C]// Paper ARMA-04-537 presented at the Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, America, June 2004. |
[15] | BARSHAD I. Temperature and heat of reaction calibration of the thermal apparatus[J]. American Mineralogist 1952, 37(2): 667-694. |
[16] | ROSS C M, RANGEL E R, CASTANIER L M, et al. A laboratory investigation of temperature-induced sand consolidation[J]. SPE Journal, 2006, 11(2): 206-215. |
[17] | CHOPRA A K, STEIN M H, ADER J C. Development of reservoir descriptions to aid in design of EOR projects[J]. SPE Reservoir Engineering, 1989, 4(2): 143-150. |
[18] | 刘震, 曾宪斌, 张万选. 沉积盆地地温与地层压力关系研究[J]. 地质学报, 1997, 71(2): 180-185. |
[18] | LIU Zhen, ZENG Xianbin, ZHANG Wanxuan. Study on the relationship between geothermal and formation pressure in sedimentary basins[J]. Journal of Geology, 1997, 71(2): 180-185 |
[19] | 刘震, 孙迪, 李潍莲, 等. 沉积盆地地层孔隙动力学研究进展[J]. 石油学报, 2016, 37(10):1193-1215. |
[19] | LIU Zhen, SUN Di, LI Weilian, et al. Advances in research on stratigraphic porodynamics of sedimentary basins[J]. Acta Petrolei Sinica, 2016, 37(10): 1193-1215. |
[20] | 郭志峰, 刘震, 刘鹏, 等. 高温水热增压实验研究及地质启示[J]. 石油实验地质, 2016, 38(6):836-841. |
[20] | GUO Zhifeng, LIU Zhen, LIU Peng, et al. Experimental analysis of aquathermal pressuring under high temperature conditions and its geological implications[J]. Petroleum Geology and Experiment, 2016, 38(6): 836-841. |
[21] | 夏新宇, 宋岩. 沉降及抬升过程中温度对流体压力的影响[J]. 石油勘探与开发, 2001, 28(3):8-11. |
[21] | XIA Xinyu, SONG Yan. Temperature effects on geopressure during deposition and erosion[J]. Petroleum Exploration and Development, 2001, 28(3): 8-11. |
[22] | 赵国欣. 烃源岩层中异常高压研究:以渤海湾盆地东营凹陷古近系为例[J]. 石油实验地质, 2008, 30(4):340-344. |
[22] | ZHAO Guoxin. Study of the abnormal high-pressure in hydrocarbon source rocks-taking Paleogene in the Dongying sag, the Bohai bay basin as an example[J]. Petroleum Geology & Experiment, 2008, 30(4): 340-344. |
[23] | KENNEDY G C, HOLSER W T. Pressure-volume-temperature and phase relations of water and carbon dioxide[M]// GSA Memoirs, 1966, 97: 371-383. |
[24] | 孟巧荣, 康志勤, 赵阳升, 等. 油页岩热破裂及起裂机制试验[J]. 中国石油大学学报:自然科学版, 2010, 34(4):89-92. |
[24] | MENG Qiaorong, KANG Zhiqin, ZHAO Yangsheng, et al. Experiment of thermal cracking and crack initiation mechanism of oil shale[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(4): 89-92. |
[25] | 陈顒, 吴晓东, 张福勤. 岩石热开裂的实验研究[J]. 科学通报, 1999, 4(8):880-883. |
[25] | CHEN Yu, WU Xiaodong, ZHANG Fuqin. Experimental study on rock thermal cracking[J]. Chinese Science Bulletin, 1999, 4(8): 880-883. |
[26] | 郑见超, 李斌, 刘羿伶, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩热演化模拟分析[J]. 油气藏评价与开发, 2018, 8(6):7-12. |
[26] | ZHENG Jianchao, LI Bin, LIU Liling, et al. Study on thermal evolution modeling of lower Cambrian Yuertusi source rock, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(6): 7-12. |
[27] | 左建平, 谢和平, 周宏伟. 等. 不同温度作用下砂岩热开裂的实验研究[J]. 地球物理学学报, 2007, 50(4):1150-1155. |
[27] | ZUO Jianping, XIE Heping, ZHOU Hongwei, et al. Experimental research on thermal cracking of sandstone under different temperature[J]. Chinese Journal of Geophysics, 2007, 50(4): 1150-1155. |
/
〈 |
|
〉 |