Tight Gas Development

Practice of potential tapping of remaining gas in channel sandstone gas reservoir under the background of mudstone interlayers development: A case study of JS22 gas layer in Xinchang Gas Filed

  • Hongwei LI ,
  • Jian YUAN ,
  • Zhichuan ZHAO ,
  • Zhilin ZHOU
Expand
  • 1. Exploration & Development Research Institute, Sinopec Southwest Oil and Gas Company, Chengdu, Sichuan 610041, China
    2. No.1 Gas Production Plant, Sinopec Southwest Oil and Gas Company, Deyang, Sichuan 610800, China

Received date: 2020-08-03

  Online published: 2022-05-07

Abstract

The JS22 gas reservoir in the Xinchang Gas Field is the microfacies of distributary channel deposit in the delta front subfacies. The mudstone interlayer developed in some sandstone layers form the channel sediments twice. For some gas wells with double developed sand layers, the perforation and fracturing are carried out only in one of the two layers, while the rest may be blocked by mudstone interlayer, resulting in its untapped situation. However, the understanding of the distribution rule of the mudstone interlayer is unclear, and the sealing performance of interlayers hasn't been verified by precedent, limiting the development of the remaining gas in this reservoir. By the establishment of the logging curve identification standards of the interlayer, the interlayer of every single well is identified and divided, and the development scale and plane distribution rule of the interlayer are studied. And then, the old wells are used to explore the vertical sealing performance of the mudstone interlayer inside the channel sandstone. The study results show that the mudstone interlayer, with the thickness of 1~15 meters, is mainly distributed in the east of the JS22 gas reservoir, and has the characteristic of one thin-line area laying between two thick areas along the distribution direction. In the application of potential tapping of Well-A1, the production obviously increase after the perforation and sand-fracture, firstly verifying that the mudstone interlayer with the thickness of 10 meters in A1 well area has better vertical sealing performance. This achievement will provide new ideas and practical basis for the development of remaining gas in the JS22 gas reservoir, and is of great significance for improving the recovery rate of the entire gas reservoir.

Cite this article

Hongwei LI , Jian YUAN , Zhichuan ZHAO , Zhilin ZHOU . Practice of potential tapping of remaining gas in channel sandstone gas reservoir under the background of mudstone interlayers development: A case study of JS22 gas layer in Xinchang Gas Filed[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(2) : 365 -372 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.02.012

References

[1] 刘成川. 新场气田沙溪庙组多层致密气藏开发调整方案研究[D]. 成都:成都理工大学, 2007.
[1] LIU Chengchuan. Research development adjustment plan for the Shaximiao tight gas reservoir with multi-layers in Xinchang Gas Field[D]. Chengdu: Chengdu University of Technology, 2007.
[2] 王旭, 李祖友, 严小勇, 等. 川西侏罗系气藏动态特征及开采对策[J]. 中外能源, 2015, 20(2):53-60.
[2] WANG Xu, LI Zuyou, YAN Xiaoyong, et al. Dynamic character and production countermeasure for Jurassic gas reservoirs in west Sichuan[J]. Sino-Global Energy, 2015, 20(2): 53-60.
[3] 朱宏权. 川西坳陷中段沙溪庙组沉积相与储层评价研究[D]. 成都:成都理工大学, 2009.
[3] ZHU Hongquan. Depositional facies and reservoir characteristics research and evaluation of Shaximiao Formation, middle area of western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2009.
[4] 胡荣杰. 新场气田沙溪庙组JS22储层三维地质建模研究[D]. 成都:成都理工大学, 2015.
[4] HU Rongjie. The 3D geological modeling of JS22 gas reservoir in Upper Shaximiao Formation, Xinchang Gas Field[D]. Chengdu: Chengdu University of Technology, 2015.
[5] 刘露, 王勇飞, 詹国卫. 川西地区致密砂岩气藏开采规律--以新场气田沙溪庙组J2S2气藏为例[J]. 天然气工业, 2019, 39(S1):179-183.
[5] LIU Lu, WANG Yongfei, ZHAN Guowei. Exploitation laws of tight sandstone gas reservoirs in the west of Sichuan: A case study for the J2S2 gas reservoir of Shaximiao Formation in Xinchang Gas Field[J]. Natural Gas Industry, 2019, 39(S1): 179-183.
[6] 王勇飞, 刘成川, 刘露. 川西坳陷致密砂岩气藏差异性开发实践与认识--以新场J2S2气藏为例[J]. 天然气工业, 2019, 39(S1):174-178.
[6] WANG Yongfei, LIU Chengchuan, LIU Lu. Practice and understanding of the difference development of tight sandstone gas reservoirs in the west Sichuan Depression:A case study for the J2S2 gas reservoir of Shaximiao Formation in Xinchang gas field[J]. Natural Gas Industry, 2019, 39(S1): 174-178.
[7] 向刘洋, 邹陈蓉. 致密砂岩气藏井网加密优化研究--以新场气田沙溪庙组气藏为例[J]. 石油地质与工程, 2020, 34(3):62-66.
[7] XIANG Liuyang, ZOU Chenrong. Optimization of well pattern infilling in tight sandstone gas reservoirs: By taking Shaximiao Formation of Xinchang gas field as an example[J]. Petroleum Geology and Engineering, 2020, 34(3): 62-66.
[8] 李锐强. 新场气田沙二气藏差气层录井再评价[D]. 成都:西南石油大学, 2014.
[8] LI Ruiqiang. Logging re-evaluation of the poor gas layer in the Sha-2 gas reservoir in Xinchang gas field[D]. Chengdu: Southwest Petroleum University, 2014.
[9] 邓强, 赵志川, 范世龙, 等. 新场气田蓬二气藏老井复查潜力评价[J]. 中外能源, 2018, 23(6):44-51.
[9] DENG Qiang, ZHAO Zhichuan, FAN Shilong, et al. Evaluation of the re-examination potential of old wells in Jp2 gas reservoir of Xinchang gas field[J]. Sino-Global Energy, 2018, 23(6): 44-51.
[10] 田刚, 李祖友, 王旭. 川西地区老井挖潜选井评层标准研究[J]. 中外能源, 2014, 19(12):41-45.
[10] TIAN Gang, LI Zuyou, WANG Xu. Standards of well choosing and formation evaluation for tapping the potential of old Wells in western Sichuan area[J]. Sino-Global Energy, 2014, 19(12): 41-45.
[11] 王安东. 河流相储层隔、夹层的研究[D]. 青岛:中国石油大学(华东), 2010.
[11] WANG Andong. The research of interlayers and interbeds in fluvial reservoir[D]. Qingdao: China University of Petroleum(East China), 2010.
[12] 邹志文, 斯春松, 杨梦云. 隔夹层成因、分布及其对油水分布的影响--以准噶尔盆地腹部莫索湾莫北地区为例[J]. 岩性油气藏, 2010, 22(3):66-70.
[12] ZOU Zhiwen, SI Chunsong, YANG Mengyun. Origin and distribution of interbeds and the influence on oil-water layer: An example from Mosuowan area in the hinterland of Junggar Basin[J]. Lithologic Reservoir, 2010, 22(3): 66-70.
[13] 王健, 徐守余, 仲维苹. 河流相储层隔夹层成因及其分布特征[J]. 地质科技情报, 2010, 29(4):84-88.
[13] WANG Jian, XU Shouyu, ZHONG Weiping. Genesis and distribution of the Interlayer in fluvial reservoir[J]. Geological Science and Technology Information, 2010, 29(4): 84-88.
[14] 束青林. 孤岛油田馆陶组河流相储层隔夹层成因研究[J]. 石油学报, 2006, 27(3):100-103.
[14] SHU Qinglin. Interlayer characterization of fluvial reservoir in Guantao Formation of Gudao Oilfield[J]. Acta Petrolei Sinica, 2006, 27(3): 100-103.
[15] 李俊飞, 王鹏飞, 杨建民, 等. 渤海湾盆地D油田三角洲前缘储层隔夹层研究[J]. 新疆石油天然气, 2018, 14(3):7-11.
[15] LI Junfei, WANG Pengfei, YANG Jianmin, et al. Research on interlayers of delta front reservoir in D Oilfield, Bohai Bay Basin[J]. Xinjiang Oil & Gas, 2018, 14(3): 7-11.
[16] 宋修章, 吕正祥, 章顺利, 等. 川西拗陷新场构造上沙溪庙组储层下限分析[J]. 成都理工大学学报(自然科学版), 2016, 43(4):431-437.
[16] SONG Xiuzhang, LYU Zhengxiang, ZHANG Shunli, et al. Study on the lower limit parameters of the Shangshaximiao Formation Reservoir in Xinchang structure, West Sichuan depression, China[J]. Journal of Chengdu University of technology(Science & Technology Edition), 2016, 43(4): 431-437.
[17] 卜淘, 李忠平, 詹国卫, 等. 川西坳陷低渗砂岩气藏剩余气类型及分布研究[J]. 天然气工业, 2003, 23(S1):13-15.
[17] BU Tao, LI Zhongping, ZHAN Guowei, et al. Types and distribution of the remaining gas in low permeability sandstone gas reservoir in west Sichuan Deperession[J]. Natural Gas Industry, 2003, 23(S1): 13-15.
[18] 刘正中. 低渗砂岩气藏剩余气分布规律研究[D]. 成都:成都理工大学, 2005.
[18] LIU Zhengzhong. Research of residual gas of low permeability sandstone[D]. Chengdu: Chengdu University of Technology, 2005.
[19] 王栎霖. 大牛地盒三气藏剩余气分布影响因素研究[D]. 成都:成都理工大学, 2011.
[19] WANG Yuelin. Study of effect factors of distribution of remaining gas in Daniudi He Ⅲ gas reservoir[D]. Chengdu: Chengdu University of Technology, 2011.
[20] 王昔彬, 刘传喜, 郑祥克, 等. 低渗特低渗气藏剩余气分布的描述[J]. 石油与天然气地质, 2003, 24(4):401-403.
[20] WANG Xibin, LIU Chuanxi, ZHENG Xiangke, et al. Quantitative description of remaining gas distribution in low and extremely-low permeability gas reservoirs[J]. Oil & Gas Geology, 2003, 24(4): 401-403.
[21] 李勇明, 李崇喜, 郭建春. 砂岩气藏压裂裂缝高度影响因素分析[J]. 石油天然气学报, 2007, 98(2):87-90.
[21] LI Yongming, LI Chongxi, GUO Jianchun. Analysis on the Influence factors of fracture height of sandstone gas reservoir fracturing[J]. Journal of Oil and Gas Technology, 2007, 98(2): 87-90.
[22] 罗天雨, 刘全稳, 胡罡. 环玛湖三叠系玛X井压裂窜层可能性分析[J]. 广东石油化工学院学报, 2017, 27(6):31-34.
[22] LUO Tianyu, LIU Quanwen, HU Gang. Possibility analysis on the communication between zones in layer fracturing of Triassic System Ma X well in Huan Ma-lake Region[J]. Journal of Guangdong University of Petrochemical Technology, 2017, 27(6): 31-34.
[23] 朱新春. 杭锦旗区块压裂缝高影响因素及延伸规律分析[J]. 石油钻采工艺, 2020, 42(1):119-144.
[23] ZHU Xinchun. Influential factors and propagation laws of hydraulic fracture height in the Hangjinqi Block[J]. Oil Drilling & Production Technology, 2020, 42(1): 119-144.
[24] 胡阳明, 胡永全, 赵金洲, 等. 裂缝高度影响因素分析及控缝高对策技术研究[J]. 重庆科技学院学报(自然科学版), 2009, 49(1):28-31.
[24] HU Yangming, HU Yongquan, ZHAO Jinzhou, et al. Analysis of fracture height Influence factors and study of height control gaming techniques[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2009, 49(1): 28-31.
Outlines

/