Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 3: 487 - 495
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.011
Well interference evaluation and prediction of shale gas wells based on machine learning
Received date: 2021-08-20
Online published: 2022-06-24
Inter-well interference seriously affects the production of shale gas wells. The evaluation and prediction of well interference degree is of great significance to the efficient development of shale gas. But the existing research mainly focuses on the interference phenomenon between shale gas wells, production performance, and parameter optimization through numerical simulation. There are few studies on the quantitative evaluation and prediction of the interference degree between shale gas wells, and the selected parameters is incomplete, which makes it difficult to objectively evaluate the well interference between shale gas wells. Therefore, the machine learning method is used to comprehensively consider the geological parameters and fracturing parameters to evaluate and predict the degree of interference between wells in the shale gas reservoir. Firstly, the initial data are processed to improve the data quality. Then, based on the processed data, cluster analysis and random forest algorithm are used to evaluate and predict the interference degree of shale gas wells. The results show that the proportions of the wells with low, medium and high well interference in the shale gas reservoirs are 25.93 %, 37.03 % and 37.04 %, respectively. The fracturing factors show significant influence on the well interference degree in the shale gas reservoirs. After parameters optimization, the prediction results of well interference degree reaches 92.07 %, indicating that the developed prediction model can be applied to forecast the well interference degree in shale gas reservoirs.
Qing ZHANG , Feng HE , Youwei HE . Well interference evaluation and prediction of shale gas wells based on machine learning[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(3) : 487 -495 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.011
[1] | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4):67-76. |
[1] | DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76. |
[2] | 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及“甜点”分布规律研究[J]. 非常规油气, 2021, 8(5):34-44. |
[2] | HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-Longmaxi Formation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5):34-44. |
[3] | 辛翠平, 白慧芳, 张磊, 等. 不同裂缝形态页岩气多级压裂水平井产能预测模型应用研究[J]. 非常规油气, 2020, 7(3):65-71. |
[3] | XIN Cuiping, BAI Huifang, ZHANG Lei, et al. Application study of multistage fracturing horizontal well production forecasting models for shale gas with different fracture forms[J]. Unconventional Oil & Gas, 2020, 7(3): 65-71. |
[4] | GUO X Y, WU K, KILLOUGH J, et al. Understanding the mechanism of interwell fracturing interference with reservoir/geomechanics/fracturing modeling in eagle ford shale[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3):842-860. |
[5] | 郭旭洋, 金衍, 黄雷, 等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺, 2021, 43(3):348-367. |
[5] | GUO Xuyang, JIN Yan, HUANG Lei, et al. Review and discussion of the study of interwell interference in shale oil and shale gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348-367. |
[6] | 陈京元, 位云生, 王军磊, 等. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021, 32(7):931-940. |
[6] | CHEN Jingyuan, WEI Yunsheng, WANG Junlei, et al. Interwell-production interference and well spacing optimization in shale gas reservoir[J]. Natural Gas Geoscience, 2021, 32(7): 931-940. |
[7] | 曾庆磊, 庄茁, 柳占立, 等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016, 33(4):643-648. |
[7] | ZENG Qinglei, ZHUANG Zhuo, LIU Zhanli, et al. Fully coupled simulation of multi-cluster fracture propagation in shale hydraulic fracturing[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-648. |
[8] | SARDINHA C, PETR C, LEHMANN J, et al. Determining interwell connectivity and reservoir complexity through frac pressure hits and production interference analysis[C]// Paper SPE-171628-MS presented at the SPE/CSUR Unconventional Resources Conference-Canada, Calgary, Alberta, Canada, September 2014. |
[9] | SULLIVAN M, ZANGANEH B, SPRINGER A, et al. Post-fracture pressure decay: A novel (and free) stage-level assessment method[C]// Paper URTEC-2019-970-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019. |
[10] | KUMAR A, SETH P, SHRIVASTAVA K, et al. Well interference diagnosis through integrated analysis of tracer and pressure interference tests[C]// Paper URTEC-2901827-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[11] | JI L J, SEN V, MIN K S, et al. Numerical simulation of DFITs within a coupled reservoir flow and geomechanical simulator-insights into completions optimization[C]// Paper SPE-194352-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, February 2019. |
[12] | 王磊, 杨春和, 郭印同, 等. 基于室内水力压裂试验的水平井起裂模式研究[J]. 岩石力学与工程学报, 2015, 34(S2):3624-3632. |
[12] | WANG Lei, YANG Chunhe, GUO Yintong, et al. Investigation on fracture initiation modes of horizontal wells based on laboratory hydraulic fracturing test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3624-3632. |
[13] | 王军磊, 贾爱林, 位云生, 等. 基于多井模型的压裂参数—开发井距系统优化[J]. 石油勘探与开发, 2019, 46(5):981-992. |
[13] | WANG Junlei, JIA Ailin, WEI Yunsheng, et al. Optimization work-flow for stimulation-well spacing designs in a multiwell pad[J]. Petroleum Exploration and Development, 2019, 46(5): 981-992. |
[14] | 雍锐, 常程, 张德良, 等. 地质—工程—经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例[J]. 天然气工业, 2020, 40(7):42-48. |
[14] | YONG Rui, CHANG Cheng, ZHANG Deliang, et al. Optimization of shale-gas horizontal well spacing based on geology-engineering-economy integration: A case study of Well Block Ning 209 in the National Shale Gas Development Demonstration Area[J]. Natural Gas Industry, 2020, 40(7): 42-48. |
[15] | HE Y W, GUO J C, TANG Y, et al. Interwell fracturing interference evaluation of multi-well pads in shale gas reservoirs: A case study in WY Basin[C]// Paper SPE-201694-MS presented at the SPE Annual Technical Conference and Exhibition, Virtual, October 2020. |
[16] | 位云生, 王军磊, 齐亚东, 等. 页岩气井网井距优化[J]. 天然气工业, 2018, 38(4):129-137. |
[16] | WEI Yunsheng, WANG Junlei, QI Yadong, et al. Optimization of shale gas well pattern and spacing[J]. Natural Gas Industry, 2018, 38(4): 129-137. |
[17] | 李维, 代锋, 左星. 存在井间干扰的页岩气井精细控压技术应用[J]. 钻采工艺, 2019, 42(5):103-105. |
[17] | LI Wei, DAI Feng, ZUO Xing. Application of fine pressure control technology in shale gas wells with inter-well interference[J]. Drilling & Production Technology, 2019, 42(5): 103-105. |
[18] | 钟思存, 何嘉, 赵素惠, 等. 基于概率模拟方法的页岩气井间干扰影响研究[C]// 第31届全国天然气学术年会(2019). 合肥: 中国石油学会天然气专业委员会, 2019:6. |
[18] | ZHONG Sicun, HE Jia, ZHAO Suhui, et al. Research on well interference of shale gas based on probability simulation[C]// The 31st National Natural Gas Academic Annual Conference (2019). Hefei: Institute of Petroleum and Gas Professional Committee of China, 2019: 6. |
[19] | 严子铭, 王涛, 柳占立, 等. 基于机器学习的页岩气采收率预测方法[J]. 固体力学学报, 2021, 42(3):221-232. |
[19] | YAN Ziming, WANG Tao, LIU Zhanli, et al. Machine-learning-based prediction methods on shale gas recovery[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 221-232. |
[20] | 钱辰, 杨少春, 许子君. 基于机器学习的页岩气“甜点”评价及其应用综述[C]// 油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019:11. |
[20] | QIAN Chen, YANG Shaochun, XU Zijun. Review of evaluation of shale gas sweet spots and its application based on machine learning[C]// International Field Exploration and Development Conference. Xi’an: Xi’an Shiyou University, 2019:11. |
[21] | 李菊花, 陈晨, 肖佳林. 基于随机森林算法的页岩气多段压裂井产量预测[J]. 长江大学学报(自然科学版), 2020, 17(4):34-38. |
[21] | LI Juhua, CHEN Chen, XIAO Jialin. Yield production of shale gas multi-stage fracturing wells based on random forest algorithm[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(4): 34-38. |
[22] | 孙艺涵. 基于机器学习的页岩有机质含量预测方法研究[D]. 北京: 中国石油大学(北京), 2019. |
[22] | SUN Yihan. Research on prediction method of total organic carbon in shale based on machine learning[D]. Beijing:China University of Petroleum(Beijing), 2019. |
[23] | 周小金, 杨洪志, 范宇, 等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探, 2021, 26(2):103-112. |
[23] | ZHOU Xiaojin, YANG Hongzhi, FAN Yu, et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(2): 103-112. |
[24] | 黄红良. 多井条件下页岩气水平井产能影响因素研究[D]. 北京: 中国石油大学(北京), 2017. |
[24] | HUANG Hongliang. Study on influence factors of hydraulic fractured horizontal well productivity in shale gas reservoir under multi-well condition[D]. Beijing: China University of Petroleum(Beijing), 2017. |
[25] | 苏晓眉, 张涛, 李玉飞, 等. 基于K-Means聚类算法的沉砂卡钻预测方法研究[J]. 钻采工艺, 2021, 44(3):5-9. |
[25] | SU Xiaomei, ZHANG Tao, LI Yufei, et al. Research on the sticking prediction method based on K-Means clustering algorithm[J]. Drilling & Production Technology, 2021, 44(3): 5-9. |
[26] | 王光宇, 宋建国, 徐飞, 等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探, 2021, 56(4):679-687. |
[26] | WANG Gangyu, SONG Jianguo, XU Fei, et al. Random forest lithology prediction method based on unbalanced sample set[J]. Oil Geophysical Prospecting, 2021, 56(4): 679-687. |
/
〈 | 〉 |