Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 3: 515 - 525
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.014
Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect
Received date: 2021-07-09
Online published: 2022-06-24
At present, the hydraulic fracturing is a key technology for shale oil and gas exploitation. The natural fractures will be encountered in the process of compression fracture propagation, and the propagation characteristics of compression fractures after the encounter of natural fractures have a significant impact on the formation of compression fracture network, thus affecting the final fracturing effect. Therefore, it is necessary to conduct the researches on the encounter of compression fractures with natural fractures. Based on the ABAQUS software, the intersecting process of two-dimensional hydraulic fracture and natural fracture under the condition of interlayer effect is simulated, by considering the fracture propagation form and tensile failure. Meanwhile, the influences of different stress differences, intersecting angles, stress differences of reservoir isolation and strength differences of reservoir on hydraulic fracture behavior are considered. The simulation results show that the fracture degree and opening effect are better under the interlayer effect, and the opening effect of natural fracture is worse with the increase of stress difference until the hydraulic fracture passes through the natural fracture. When the intersection angle is small, the interlayer effect has no effect on the fracture propagation path, and only the upper part of the natural fracture is opened, but the opening degree of the fracture is better. With the increase of the intersection angle, the opening effect of the natural fracture is better. When the intersection angle is 90°, the hydraulic fracture directly passes through the natural fracture. With the increase of interlayer stress difference, pore pressure at the intersection point increases, and the opening effect of natural fractures is better. When the interlayer stress difference exceeds a certain value, hydraulic fractures will pass through natural fractures. The larger the elastic modulus difference between reservoirs, and the stronger the formation resistance to disturbance, the larger the pore pressure at the intersection point will be, which determines the propagation behavior of fractures. When the elastic modulus difference between reservoirs is small or large, the opening effect of natural fractures is better.
Xin ZHOU , Xiangjun LIU , Yi DING , Lixi LIANG , Yexuan LIU . Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(3) : 515 -525 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.014
[1] | 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4):819-828. |
[1] | HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. |
[2] | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2):1-13. |
[2] | LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. |
[3] | 王倩楠, 游一, 李茜, 等. 中国页岩油勘探开发前景[J]. 石化技术, 2019, 26(11):224-225. |
[3] | WANG Qiannan, YOU Yi, LI Qian, et al. Prospects of shale oil exploration and development in China[J]. Petrochemical Industry Technology, 2019, 26(11): 224-225. |
[4] | 仝少凯, 高德利. 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺, 2019, 41(1):101-115. |
[4] | TONG Shaokai, GAO Deli. Basic research progress and development suggestions on hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019, 41(1): 101-115. |
[5] | 张搏, 李晓, 王宇, 等. 油气藏水力压裂计算模拟技术研究现状与展望[J]. 工程地质学报, 2015, 23(2):301-310. |
[5] | ZHANG Bo, LI Xiao, WANG Yu, et al. Current status and prospect of computer simulation techniques of hydraulic fracturing in oil and gas field[J]. Journal of Engineering Geology, 2015, 23(2): 301-310. |
[6] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
[7] | MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play ith multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175. |
[8] | BLANTON T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// Paper SPE-15261-MS presented at the SPE Unconventional Gas Technology Symposium, Louisville, Kentucky, May 1986. |
[9] | WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220. |
[10] | RAHMAN M M, AGHIGHI M A, RAHMAN S S, et al. Interaction between induced hydraulic fracture and pre-existing natural fracture in a poro-elastic environment: Effect of pore pressure change and the orientation of natural fracture[C]// Paper SPE-122574-MS presented at the Asia Pacific Oil and Gas Conference & Exhibition, Jakarta, Indonesia, August 2009. |
[11] | 马耕, 张帆, 刘晓, 等. 天然裂缝对煤岩体水力裂缝扩展影响研究[J]. 河南理工大学学报(自然科学版), 2016, 35(2):178-182. |
[11] | MA Geng, ZHANG Fan, LIU Xiao, et al. Research on the influence of natural fractures on hydraulic fractures propagation in coal and rock mass[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(2): 178-182. |
[12] | 刘向君, 丁乙, 罗平亚, 等. 天然裂缝对水力裂缝延伸的影响研究[J]. 特种油气藏, 2018, 25(2):148-153. |
[12] | LIU Xiangjun, DI Yi, LUO Pingya, et al. Influence of natural fracture on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 148-153. |
[13] | 刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018, 39(3):320-326,334. |
[13] | LIU Shun, HE Heng, ZHAO Qianyun, et al. Staggered extension laws of hydraulic fracture and natural fracture[J]. Acta Petrolei Sinica, 2018, 39(3): 320-326. |
[14] | 郭静芸, 王宇. 水力裂缝沟通天然裂缝活化延伸的机理研究[J]. 工程地质学报, 2018, 26(6):1523-1533. |
[14] | GUO Jingyun, WANG Yu. Mechanism of natural fracture reactivation and propagation by hydraulic fracture[J]. Journal of Enginering Geology, 2018, 26(6): 1523-1533. |
[15] | 肖阳, 张丽英, 邓虎成, 等. 水力裂缝及天然裂缝相交延伸规律及真三轴物理模拟实验[J]. 石油钻采工艺, 2021, 43(1):83-88. |
[15] | XIAO Yang, ZHANG Liying, DENG Hucheng, et al. Intersection and propagation laws of hydraulic fractures and natural fractures and true axial physical simulation experiment[J]. Oil Drilling & Production Technology, 2021, 43(1): 83-88. |
[16] | 周小金, 雍锐, 范宇, 等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J]. 中国石油勘探, 2020, 25(6):94-104. |
[16] | ZHOU Xiaojin, YONG Rui, FAN Yu, et al. Influence of natural fractures on fracturing of horizontal shale gas wells and process adjustment[J]. China Petroleum Exploration, 2020, 25(6): 94-104. |
[17] | 张健, 王金意, 荆铁亚, 等. 天然裂缝角度对水力压裂的影响数值分析[J]. 常州大学学报(自然科学版), 2020, 32(3):34-39. |
[17] | ZHANG Jian, WANG Jinyi, JING Tieya, et al. Numerical analysis of the influence of natural fracture angle on hydraulic fracturing[J]. Journal of Changzhou University(Natural Science Edition), 2020, 32(3): 34-39. |
[18] | 沈永星, 冯增朝, 周动, 等. 天然裂缝对页岩储层水力裂缝扩展影响数值模拟研究[J]. 煤炭科学技术, 2021, 49(8):195-202. |
[18] | SHEN Yongxing, FENG Zengchao, ZHOU Dong, et al. Study on numerical simulation of effect on natural fractures to hydraulic fracture propagation in shale reservoirs[J]. Coal Science and Technology, 2021, 49(8): 195-202. |
[19] | 魏明强, 段永刚, 李彦波, 等. 存在大尺度天然裂缝的气藏数值试井分析方法[J]. 天然气地球科学, 2014, 25(5):778-782. |
[19] | WEI Mingqiang, DUAN Yonggang, LI Yanbo, et al. Study on numerical well test method of gas reservoirs with large-scale fracture[J]. Natural Gas Geoscience, 2014, 25(5): 778-782. |
[20] | 张帆, 马耕, 冯丹. 大尺寸真三轴煤岩水力压裂模拟试验与裂缝扩展分析[J]. 岩土力学, 2019, 40(5):1890-1897. |
[20] | ZHANG Fan, MA Geng, FENG Dan. Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions[J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897. |
[21] | 郭培峰, 周文, 邓虎成, 等. 致密储层压裂真三轴物理模拟实验及裂缝延伸规律[J]. 成都理工大学学报(自然科学版), 2020, 47(1):65-74. |
[21] | GUO Peifeng, ZHOU Wen, DENG Hucheng, et al. Real triaxial physical simulation experiment of fracturing and the law of fracture extension in tight reservoir[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(1): 65-74. |
[22] | 何强, 李凤霞, 史爱萍, 等. 基于三维CT重构的油页岩复杂水力裂缝网络分形表征[J]. 油气地质与采收率, 2021, 28(5):116-123. |
[22] | HE Qiang, LI Fengxia, SHI Aiping, et al. Fractal characterization of complex hydraulic fracture networks of oil shale via 3D CT reconstruction[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5):116-123. |
[23] | 陈苏然. 水力压裂裂缝扩展影响因素研究[D]. 西安: 西安理工大学, 2018. |
[23] | CHEN Suran. Study on the influencing factors of crack[D]. Xi'an: Xi’an University of Technology, 2018. |
[24] | 王璜, 王贵玲, 岳高凡, 等. 天然裂缝影响下的花岗岩水力裂缝扩展数值模拟[J]. 地质学报, 2020, 94(7):2124-2130. |
[24] | WANG Huang, WANG Guiling, YUE Gaofan, et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica, 2020, 94(7): 2124-2130. |
/
〈 | 〉 |