Methodological and Theory

Experimental study on interfacial interaction between methane and vitrinite and durain: A case study of bituminous coal in Minhe Basin

  • Dongmin MA ,
  • Xin WANG ,
  • Jinxiang TENG ,
  • Changjiang JI ,
  • Kai SHAO ,
  • Chao ZHENG ,
  • Yusong JI ,
  • Peng HUI
Expand
  • 1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
    2. Key Laboratory of Coal and Coalbed Methane Co-mining Technology, Jin cheng, Shanxi 048000, China
    3. Shaanxi Coalbed Methane Development Corp., Ltd., Xi’an, Shaanxi 710065, China

Received date: 2022-04-12

  Online published: 2022-09-02

Abstract

In order to study the differences in the adsorption/desorption characteristics of methane between the gelification and fusinization in the bituminous coal, the 2# coal seam of the Haishiwan Coal Mine in Minhe Basin is collected as the research object. By using the Langmuir fitting and dual-site Langmuir fitting on the experimental data of isothermal adsorption/desorption respectively, the adsorption thermodynamic characteristics of different fugacity environments are analyzed by calculating the isosteric adsorption heat, and the influence of maceral difference on coalbed methane production is discussed. The results show that: ①The adsorption of methane on the gelification and fusinization in coal accords with the Langmuir function, and the fitting degree is higher than 0.99. The adsorption capacity of the gelification is much higher than that of the fusinization. ②At the same temperature point, there is desorption lag phenomenon in both granular coal and pillar coal, which is due to the difference of adsorption heat. The fitting results of granular coal experiment are larger than those of lump coal experiment. ③The equivalent adsorption heat increases with the increase of fugacity and decreases with the increase of temperature. The influence of adsorption phase density on the equivalent adsorption heat is greater than that of temperature, leading to the adsorption of methane molecules with greater kinetic energy on the coal surface. The equivalent adsorption heat decreases with the increase of temperature as a whole. ④The adsorption capacity of different components of coal is quite different, and areas with high vitrain content should be the first choice for CBM well location deployment.

Cite this article

Dongmin MA , Xin WANG , Jinxiang TENG , Changjiang JI , Kai SHAO , Chao ZHENG , Yusong JI , Peng HUI . Experimental study on interfacial interaction between methane and vitrinite and durain: A case study of bituminous coal in Minhe Basin[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(4) : 556 -563 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.002

References

[1] 张文静, 琚宜文, 卫明明, 等. 不同变质变形煤储层吸附/解吸特征及机理研究进展[J]. 地学前缘, 2015, 22(2):232-242.
[1] ZHANG Wenjing, JU Yiwen, WEI Mingming, et al. Study on characteristies and mechanism of adsorption/desorption on different metamorphic-deformed coal reservoirs[J]. Earth Science Frontiers, 2015, 22(2): 232-242.
[2] 赵丽娟, 秦勇, WANG Geoff, 等. 高温高压条件下深部煤层气吸附行为[J]. 高校地质学报, 2013, 19(4):648-654.
[2] ZHAO Lijuan, QIN Yong, WANG Geoff, et al. Adsorption behavior of deep coalbed methane under high temperatures and pressures[J]. Geological Journal of China Universities, 2013, 19(4): 648-654.
[3] 王宝俊, 章丽娜, 凌丽霞, 等. 煤分子结构对煤层气吸附与扩散行为的影响[J]. 化工学报, 2016, 67(6):2548-2557.
[3] WANG Baojun, ZHANG Lina, LING Lixia, et al. Effects of coal molecular structure on adsorption and diffusion behaviors of coalbed methane[J]. Ciesc Journal, 2016, 67(6): 2548-2557.
[4] 徐江涛, 李靖, 侯文刚, 等. 石灰沟地区上石炭统煤系气源岩生气潜力分析[J]. 石油地质与工程, 2019, 33(5):15-20.
[4] XU Jiangtao, LI Jing, HOU Wengang, et al. Gas potential analysis of upper carboniferous coal-measure gas source rocks in Shihuigou area[J]. Petroleum Geology & Engineering, 2019, 33(5): 15-20.
[5] 张丽萍, 苏现波, 曾荣树. 煤体性质对煤吸附容量的控制作用探讨[J]. 地质学报, 2006, 80(6):910-915.
[5] ZHANG Liping, SU Xianbo, ZENG Rongshu. Discussion on the controlling effects of coal properties on coal adsorption capacity[J]. Acta Geologica Sinica, 2006, 80(6): 910-915.
[6] 张文静, 琚宜文, 孔祥文, 等. 沁水盆地南部高煤级变形煤结构组成特征及其对吸附/解吸的影响[J]. 中国科学院大学学报, 2014, 31(1):98-107.
[6] ZHANG Wenjing, JU Yiwen, KONG Xiangwen, et al. Structure and composition characteristics of deformed high-rank coals in the south of Qinshui basin and their influence on CBM adsorption/desorption[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(1): 98-107.
[7] 李振涛, 姚艳斌, 周鸿璞, 等. 煤岩显微组成对甲烷吸附能力的影响研究[J]. 煤炭科学技术, 2012, 40(8):125-128.
[7] LI Zhentao, YAO Yanbin, ZHOU Hongpu, et al. Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology, 2012, 40(8): 125-128.
[8] 张凯, 汤达祯, 陶树, 等. 不同变质程度煤吸附能力影响因素研究[J]. 煤炭科学技术, 2017, 45(5):192-197.
[8] ZHANG Kai, TANG Dazhen, TAO Shu, et al. Study on influence factors of adsorption capacity of different metamorphic degree coals[J]. Coal Science and Technology, 2017, 45(5): 192-197.
[9] 马东民, 张遂安, 蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(3):477-480.
[9] MA Dongmin, ZHANG Sui'an, LIN Yabing. Isothermal adsorption and desorption experiment of coal andexperimental results accuracy fitting[J]. Journal of China Coal Society, 2011, 36(3): 477-480.
[10] 崔哲治, 孙卫. 基于高压压汞与核磁共振的致密砂岩孔隙结构研究——以苏里格气田山西组与下石盒子组为例[J]. 非常规油气, 2020, 7(2):49-55.
[10] CUI Zhezhi, SUN Wei. Study on the pore structure of dense sandstone based on high-pressure piezometric mercury and nuclear magnetic resonance: Example of Shanxi and Lower Shibox formations in Surig gas field[J]. Unconventional Oil and Gas, 2020, 7(2): 49-55.
[11] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学, 2010, 40(11):1598-1607.
[11] YAO Yanbin, LIU Dameng, CAI Yidong, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Scientia Sinica (Terrae), 2010, 40(11): 1598-1607.
[12] 赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(4):400-407.
[12] ZHAO Wei, YANG Zhiyuan, LI Zhen, et al. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 400-407.
[13] 白建平, 张典坤, 杨建强, 等. 寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(9):1812-1819.
[13] BAI Jianping, ZHANG Diankun, YANG Jianqiang, et al. Thermodynamic characteristics of adsorption-desorption of methane in coal seam 3 at Sihe Coal Mine[J]. Journal of China Coal Society, 2014, 39(9): 1812-1819.
[14] 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5):27-32.
[14] LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32.
[15] 施云海, 王艳莉, 彭阳峰. 化工热力学[M]. 上海: 华东理工大学出版社, 2007.
[15] SHI Yunhai, WANG Yanli, PENG Yangfeng. Chemical thermodynamics[M]. Shanghai: East China University of Technology Press, 2007.
[16] 卢守青, 王亮, 秦立明. 不同变质程度煤的吸附能力与吸附热力学特征分析[J]. 煤炭科学技术, 2014, 42(6):130-135.
[16] LU Shouqing, WANG Liang, QIN Liming. Analysis on adsorption capacity and adsorption thermodynamic characteristics of different metamorphic degree coals[J]. Coal Science and Technology, 2014, 42(6): 130-135.
[17] 郑青榕, BIRKETT G, DO D D. 甲烷在活性炭上吸附的实验及理论分析[J]. 天然气化工, 2009, 34(1):41-45.
[17] ZHENG Qingrong, BIRKETT G, DO D D. Theoretical and experiment analysis of methane adsorption on activated carbon[J]. Natural Gas Chemical Industry, 2009, 34(1): 41-45.
[18] 马东民, 李来新, 李小平, 等. 大佛寺井田4号煤CH4与CO2吸附解吸实验比较[J]. 煤炭学报, 2014, 39(9):1938-1944.
[18] MA Dongmin, LI Laixin, LI Xiaoping, et al. Contrastive experiment of adsorption-desorption between CH4 and CO2 in coal seam 4 of Dafosi Coal Mine[J]. Journal of China Coal Society, 2014, 39(9): 1938-1944.
[19] 朱一铭, 王嘉君, 徐源鸿, 等. CH4和CO2的水合物沉积物力学特性对比研究[J]. 非常规油气, 2021, 8(5):1-8.
[19] ZHU Yiming, WANG Jiajun, XU Yuanhong, et al. A comparative study on the mechanical properties of hydrate sediments with CH4 and CO2[J]. Unconventional Oil and Gas, 2021, 8(5): 1-8.
[20] 马东民, 马薇, 蔺亚兵. 煤层气解吸滞后特征分析[J]. 煤炭学报, 2012, 37(11):1885-1889.
[20] MA Dongmin, MA Wei, LIN Yabing. Desorption hysteresis characteristics of CBM[J]. Journal of China Coal Society, 2012, 37(11): 1885-1889.
[21] 李庆庆, 何倩. 大佛寺4号煤等量吸附热分析[J]. 能源与环保, 2018, 40(12):132-134.
[21] LI Qingqing, He Qian. Equivalent adsorption thermal analysis of Dafosi No. 4 coal[J]. China Energy and Environmental Protection, 2018, 40(12): 132-134.
[22] 邱峰. 煤层气吸附/解吸过程中能量变化特征[D]. 北京: 中国地质大学(北京), 2021.
[22] QIU Feng. Energy variation characteristics of coalbed methane adsorption / desorption process[D]. Beijing: China University of Geosciences (Beijing), 2021.
[23] 魏刚. 利用测井交会图技术建立GZ地区煤层气分类评价标准[J]. 石油地质与工程, 2020, 34(2):54-56.
[23] WEI Gang. Establishment of classification and evaluation standard of coalbed methane in GZ area by well logging cross plot technology[J]. Petroleum Geology & Engineering, 2020, 34(2): 54-56.
Outlines

/