Field Application

Thermal injection stimulation to enhance coalbed methane recovery

  • Zhaozhong YANG ,
  • Jianfeng YUAN ,
  • Jingyi ZHU ,
  • Xiaogang LI ,
  • Yang LI ,
  • Hao WANG
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. China ZhenHua Oil Co., Ltd., Beijing 100031, China

Received date: 2022-04-14

  Online published: 2022-09-02

Abstract

Thermal injection stimulation technology, which is suitable for coal seams with low water content and difficult pressure reduction and desorption, is an effective method to increase coalbed methane production besides hydraulic fracturing. Based on the literature research at home and abroad, the stimulation mechanism of coalbed methane heat injection is expounded, the influences of heat injection and temperature rise on adsorption and desorption and permeability of coal seam are analyzed, and the thermal-hydraulic-mechanical coupling relationship in the process of thermal coalbed methane production are summarized. Then, four methods, which are thermal steam injection, thermal CO2 injection, microwave thermal injection and coal seam burning, are introduced, and their technical principles, characteristics and research progress at home and abroad are summarized. The study shows that the method of heat injection can promote the desorption of coalbed methane, increase the content of free coalbed methane and achieve the purpose of increasing the coalbed methane production. Meanwhile, thermal cracking and coal pyrolysis caused by heat injection can improve the pore structure of coal seam, and communicate and increase the fracture network of coal seam, which are beneficial to the diffusion and seepage of coalbed methane. The thermal injection stimulation technology of coalbed methane can effectively solve the problems of low water content, difficult depressurization and desorption, and strong water sensitivity of coalbed methane, which is another potential stimulation method to replace hydraulic fracturing.

Cite this article

Zhaozhong YANG , Jianfeng YUAN , Jingyi ZHU , Xiaogang LI , Yang LI , Hao WANG . Thermal injection stimulation to enhance coalbed methane recovery[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(4) : 617 -625 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.009

References

[1] 杨兆中, 刘云锐, 张平, 等. 煤层气直井地层破裂压力计算模型[J]. 石油学报, 2018, 39(5):578-586.
[1] YANG Zhaozhong, LIU Yunrui, ZHANG Ping, et al. A model for calculating formation breakdown pressure in CBM vertical wells[J]. Acta Petrolei Sinica, 2018, 39(5): 578-586.
[2] 李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析[J]. 煤炭学报, 2020, 45(2):626-632.
[2] LI Bobo, GAO Zheng, YANG Kang, et al. Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure[J]. Journal of China Coal Society, 2020, 45(2): 626-632.
[3] 秘旭晴. 低渗透储层煤层气注热开采过程能量分布规律研究[D]. 阜新: 辽宁工程技术大学, 2019.
[3] MI Xuqing. Study on energy distribution law of coal seam gas injection in low permeability reservoir[D]. Fuxin: Liaoning Technical University, 2019.
[4] LIU D M, ZOU Z, CAI Y D, et al. An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103899.
[5] CHIHARU U, KOKI U, TAKUYA A, et al. New insights into the heat of adsorption of water, acetonitrile, and n-hexane in porous carbon with oxygen functional groups[J]. Journal of Colloid and Interface Science, 2019, 552: 412-417.
[6] YE J C, TAO S, ZHAO S P, et al. Characteristics of methane adsorption/desorption heat and energy with respect to coal rank[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104445.
[7] DENG J C, KANG J H, ZHOU F B, et al. The adsorption heat of methane on coal: comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter[J]. Fuel, 2019, 237: 81-90.
[8] 邱峰. 煤层气吸附/解吸过程中能量变化特征[D]. 北京: 中国地质大学(北京), 2021.
[8] QIU Feng. Variation characteristics of energy in the process of coalbed methane adsorption and desorption[D]. Beijing: China University of Geosciences(Beijing), 2021.
[9] 刘曰武, 苏中良, 方虹斌, 等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010, 19(6):37-44.
[9] LIU Yuewu, SU Zhongliang, FANG Hongbin, et al. Review on CBM desorption/adsorption mechanism[J]. Well Testing, 2010, 19(6): 37-44.
[10] 马东民, 张遂安, 王鹏刚, 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011, 39(1):20-23.
[10] MA Dongmin, ZHANG Sui’an, WANG Penggang, et al. Mechanism of coalbed methane desorption at different temperatures[J]. Coal Geology and Exploration, 2011, 39(1): 20-23.
[11] 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响[J]. 西安科技大学学报, 2009, 29(4):449-453.
[11] ZENG Shejiao, MA Dongmin, WANG Penggang. Effect of temperature changing on desorption of coalbed methane[J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 449-453.
[12] LIU J, KANG Y, CHEN M, et al. Effect of high-temperature treatment on the desorption efficiency of gas in coalbed methane reservoirs: Implication for formation heat treatment[J]. International Journal of Hydrogen Energy, 2022, 47(19): 10531-10546.
[13] HAO S, ZHANG L, JIA Y. Synergistic effect of blast furnace slag on the pyrolysis process of oil-rich coal, tar product distribution and kinetic analysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-14.
[14] 马丽, 王双明, 段中会, 等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(2):1-8.
[14] MA Li, WANG Shuangming, DUAN Zhonghui, et al. Potential of oil-rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration, 2022, 50(2): 1-8.
[15] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5):1365-1377.
[15] WANG Shuangming, SHI Qingmin, WANG Shengquan, et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377.
[16] 任常在, 代元军, 赵龙广. 低渗透煤层气间歇注热实验研究[J]. 煤炭技术, 2016, 35(1):22-24.
[16] REN Changzai, DAI Yuanjun, ZHAO Longguang. Experimental study of low permeability coal bed by intermittent inject Heat[J]. Coal Technology, 2016, 35(1): 22-24.
[17] LI B, REN C, WANG Z, et al. Experimental study on damage and the permeability evolution process of methane-containing coal under different temperature conditions[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106509.
[18] JIANG C, WANG Y, DUAN M, et al. Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock[J]. Fuel, 2021, 304: 121455.
[19] 李波波, 高政, 杨康, 等. 温度与孔隙压力耦合作用下煤岩吸附—渗透率模型研究[J]. 岩石力学与工程学报, 2020, 39(4):668-681.
[19] LI Bobo, GAO Zheng, YANG Kang, et al. Study on coal adsorption-permeability model under the coupling of temperature and pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 668-681.
[20] 巩天白. 低渗透储层煤层气注热开采能量迁移及热经济性评价研究[D]. 阜新: 辽宁工程技术大学, 2020.
[20] GONG Tianbai. Study on the evaluation of energy migration and thermal economics evaluation of CBM thermal injection mining in low permeability reservoirs[D]. Fuxin: Liaoning Technical University, 2020.
[21] GAO Z, LI B, LI J H, et al. Coal permeability related to matrix-fracture interaction at different temperatures and stresses[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108428.
[22] LI X C, YAN X P, KANG Y L. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions[J]. Journal of Geophysics and Engineering, 2018, 15(2): 386-396.
[23] 滕腾. 煤层气开采中的热—湿—流—固耦合机理研究[D]. 徐州: 中国矿业大学, 2017.
[23] TENG Teng. Mechanism of heat-moisture-fluid-solid interactions in coal seam gas recovery[D]. Xuzhou: China University of Mining and Technology, 2017.
[24] WANG Z, LI S, LI Z. A novel strategy to reduce carbon emissions of heavy oil thermal recovery: Condensation heat transfer performance of flue gas-assisted steam flooding[J]. Applied Thermal Engineering, 2022, 205: 118076.
[25] 杨新乐, 张永利. 热采煤层气藏过程煤层气运移规律的数值模拟[J]. 中国矿业大学学报, 2011, 40(1):89-94.
[25] YANG Xinle, ZHANG Yongli. Numerical simulation on flow rules of coal-bed methane by thermal stimulation[J]. Journal of China University of Mining and Technology, 2011, 40(1): 89-94.
[26] 刘杰. 低渗透煤层煤层气注热开采中注热过程的温度场分析[D]. 阜新: 辽宁工程技术大学, 2008.
[26] LIU Jie. Analysis on temperature field through injection of heat into low permeability coal seam[D]. Fuxin: Liaoning Technical University, 2008.
[27] 石晓巅. 煤层气热采等效热传导物理与数值模拟研究[D]. 太原: 太原理工大学, 2021.
[27] SHI Xiaodian. Study on equivalent heat conduction physics and numerical simulation of exploitation of CBM by vapor injection[D]. Taiyuan: Taiyuan University of Technology, 2021.
[28] 柴琳. 煤吸附超临界状态甲烷—水蒸气规律及注热增产机理研究[D]. 太原: 太原理工大学, 2017.
[28] CHAI Lin. Study on adsorption law of super critical methane and water vapor and heat injection mechanism of ECBM[D]. Taiyuan: Taiyuan University of Technology, 2017.
[29] 唐明云, 张亮伟, 郑春山, 等. 考虑蒸汽相变煤层气注热开采数值模拟研究[J]. 采矿与安全工程学报, 2022, 39(2):370-379.
[29] TANG Mingyun, ZHANG Liangwei, ZHENG Chunshan, et al. Numerical simulation of coalbed methane production by heat injection considering steam condensation[J]. Journal of Mining and Safety Engineering, 2022, 39(2): 370-379.
[30] 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热—流—固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(6):1044-1049.
[30] YANG Xinle, REN Changzai, ZHANG Yongli, et al. Numerical simulation of the coupled thermal fluid solid mathematical models during extracting methane in low permeability coal bed by heat injection[J]. Journal of China Coal Society, 2013, 38(6): 1044-1049.
[31] WEI G M, WEN H, DENG J, et al. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test[J]. Fuel, 2021, 284: 119043.
[32] 王永康. 注二氧化碳驱替甲烷实验及数值模拟分析[D]. 徐州: 中国矿业大学, 2016.
[32] WANG Yongkang. Experiment and numerical simulation analysis of displacing CH4 by CO2 injection[D]. Xuzhou: China University of Mining and Technology, 2016.
[33] MU Y L, FAN Y P, WANG J, et al. Numerical study on the injection of heated CO2 to enhance CH4 recovery in water-bearing coal reservoirs[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-19.
[34] FANG H H, SANG S X, LIU S Q. The coupling mechanism of the thermal-hydraulic-mechanical fields in CH4-bearing coal and its application in the CO2-enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106177.
[35] FANG H H, SANG S X, LIU S Q. Numerical simulation of enhancing coalbed methane recovery by injecting CO2 with heat injection[J]. Petroleum Science, 2019, 16(1): 32-43.
[36] MA T R, RUTQVIST J, OIDENBURG C M, et al. Coupled thermal-hydrological-mechanical modeling of CO2-enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2017, 179: 81-91.
[37] 黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(8):2044-2050.
[37] LI Li, LIANG Weiguo, LI Zhigang, et al. Experimental investigation on enhancing coalbed methane recovery by injecting high temperature CO2[J]. Journal of China Coal Society, 2017, 42(8): 2044-2050.
[38] 黎力. 注热CO2驱替增产煤层气试验与数值模拟研究[D]. 太原: 太原理工大学, 2017.
[38] LI Li. Experimental and numerical investigation on enhancing coalbed methane recovery by injection heated CO2[D]. Taiyuan: Taiyuan University of Technology, 2017.
[39] 封官宏. 二氧化碳置换煤层气(CO2-ECBM)地质工程中多相渗流和相态转化过程分析与数值模型[D]. 长春: 吉林大学, 2018.
[39] FENG Guanhong. Process analyses and numerical models for multiphase flow and phase change in CO2-ECBM engineering[D]. Changchun: Jilin University, 2018.
[40] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5):1-9.
[40] SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology Exploration, 2018, 46(5): 1-9.
[41] 杨兆中, 朱静怡, 李小刚, 等. 微波加热技术在非常规油资源中的研究现状与展望[J]. 化工进展, 2016, 35(11):3478-3483.
[41] YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Progress in researches on microwave heating in unconventional oil resources[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3478-3483.
[42] 崔宏达. 微波加热开采煤层气解吸渗流过程数值模拟研究[D]. 阜新: 辽宁工程技术大学, 2015.
[42] CUI Hongda. Numerical simulation of the exploitation of CBM desorption process by microwave heating[D]. Fuxin: Liaoning Technical University, 2015.
[43] 李贺. 微波辐射下煤体热力响应及其流—固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.
[43] LI He. Thermodynamical response of coal and the hydraulic-mechanical coupling mechanism under microwave irradiation[D]. Xuzhou: China University of Mining and Technology, 2018.
[44] 崔余岩. 微波加热提高煤层气渗流性能的研究[D]. 阜新: 辽宁工程技术大学, 2017.
[44] CUI Yuyan. Study on improving the seepage performance of coal-bed methane by microwave heating[D]. Fuxin: Liaoning Technical University, 2017.
[45] 马小童. 微波对煤中甲烷解吸—二氧化碳吸附双重激励作用及机理[D]. 焦作: 河南理工大学, 2019.
[45] MA Xiaotong. Double excitation and mechanism of microwave on methane desorption and carbon dioxide adsorption in coal[D]. Jiaozuo: Henan Polytechnic University, 2019.
[46] 胡国忠, 朱怡然, 李志强. 可控源微波场促进煤体中甲烷解吸的试验研究[J]. 岩石力学与工程学报, 2017, 36(4):874-880.
[46] HU Guozhong, ZHU Yiran, LI Zhiqiang. Experimental study on desorption enhancing of methane in coal mass using a controlled microwave field[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 874-880.
[47] WANG Z J, WANG X J. Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating[J]. Scientific Reports, 2021, 11(1): 1-16.
[48] FU X X, LUN Z M, ZHAO C P, et al. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: Implications for coalbed methane (CBM) production[J]. Fuel, 2021, 301: 121022.
[49] HUANG J X, XU G, LIANG Y P, et al. Improving coal permeability using microwave heating technology—A review[J]. Fuel, 2020, 266: 117022.
[50] LAN W J, WANG H X, LIU Q H, et al. Investigation on the microwave heating technology for coalbed methane recovery[J]. Energy, 2021, 237: 121450.
[51] 王晓娟. 微波辐射下煤储层电磁—热—流—固耦合及数值模拟[D]. 焦作: 河南理工大学, 2020.
[51] WANG Xiaojuan. Electromagnetic-thermal-hydraulic-mechanical coupling and numerical simulation of coal reservoir under microwave irradiation[D]. Jiaozuo: Henan Polytechnic University, 2020.
[52] HUANG J X, XU G, HU G Z, et al. A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal[J]. Fuel Processing Technology, 2018, 177: 237-245.
[53] ZHU J Y, WANG H, YANG Z Z, et al. Thermal stimulation on enhanced coalbed methane recovery under microwave heating based on a fully coupled numerical model[C]// Paper SPE-208904-MS presented at the SPE Canadian Energy Technology Conference, Calgary, Alberta, Canada, March 2022.
[54] ZHU J Y, YANG Z Z, LI X G, et al. The effect of microwave irradiation on coal for enhanced gas recovery of coalbed methane[C]// Paper URTEC-2019-92-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019.
[55] SUN C, LIU W Q, YANG R, et al. Sensitivity analysis on the microwave irradiation enhancing coal seam gas recovery: A coupled electromagnetic-thermo-hydro-mechanical model[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104457.
[56] LIN B Q, LI H, CHEN Z W, et al. Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model[J]. Applied Thermal Engineering, 2017, 126: 949-962.
[57] 杨新乐, 姜涛, 苏畅, 等. 脉动微波循环注热开采煤层气数值模拟[J]. 微波学报, 2021, 37(4):89-94.
[57] YANG Xinle, JIANG Tao, SU Chang, et al. Numerical simulation of coalbed methane extraction by pulsation cycle microwave heat injection[J]. Journal of Microwaves, 2021, 37(4): 89-94.
[58] WANG Z X, GAO D L, FANG J. Numerical simulation of RF heating heavy oil reservoir based on the coupling between electromagnetic and temperature field[J]. Fuel, 2018, 220: 14-24.
[59] 毛琼, 王绪性, 王芳, 等. 火烧煤层开采煤层气的研究[J]. 中国煤层气, 2011, 8(6):33-36.
[59] MAO Qiong, WANG Xuxing, WANG Fang, et al. Study on extraction of CBM by combustion of coal seams[J]. China Coalbed Methane, 2011, 8(6): 33-36.
[60] BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification: From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1): 189-214.
[61] 谢启红. 火烧煤层提高煤层气采收率机理研究[D]. 秦皇岛: 燕山大学, 2017.
[61] XIE Qihong. The mechanism of burning coal on enhancing coalbed methane recovery[D]. Qinhuangdao: Yanshan University, 2017.
[62] 刘盈, 马悦, 黄俊杰. 火烧煤层数值模拟研究[J]. 煤炭技术, 2017, 36(9):29-31.
[62] LIU Ying, MA Yue, HUANG Junjie. Numerical simulation study on combustion of coal seam[J]. Coal Technology, 2017, 36(9): 29-31.
[63] 刘盈, 白兴家. 火烧煤层提高强水敏储层煤层气采收率初探[J]. 煤矿安全, 2016, 47(10):180-183.
[63] LIU Ying, BAI Xingjia. Exploration on enhancing extraction of CBM in water-sensitive reservoir by combustion of coal seams[J]. Safety in Coal Mines, 2016, 47(10): 180-183.
Outlines

/