Field Application

Applicability and mechanism of dual-tubing screen completion technology for Fukang Mining Area in Xinjiang

  • Long ZHANG ,
  • Yibing WANG ,
  • Bao’an XIAN ,
  • Yafei ZHANG ,
  • Zhanglong TAN ,
  • Tuersong HAERHENG ,
  • Hao SUN ,
  • Guan WANG ,
  • Jintao ZHANG
Expand
  • 1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan 454003, China
    2. Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, Henan 454003, China
    3. Henan International Joint Laboratory for Unconventional Energy Geology and Development, Jiaozuo, Henan 454003, China
    4. Research Center of Coalbed Methane/Gas Geology and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China
    5. Xinjiang Cleanseed New Energy Co., Ltd., Fukang, Xinjiang 831500, China
    6. China United Coalbed Methane Co., Ltd., Beijing 100016, China

Received date: 2022-05-30

  Online published: 2022-09-02

Abstract

The coal reservoir in Fukang mining area of Xinjiang has different characteristics of large inclination angle, large thickness, multiple coal seams and complex structure, and the development progress of coalbed methane(CBM) in the mining area is slow. It is urgent to find a suitable integrated development technology for CBM geology engineering conditions to provide strong guidance for the development of CBM in Xinjiang. The dual-tubing screen completion technology integrates the completion and stimulation, and has promoted and applied more than 400 CBM horizontal wells in the Qinshui Basin. The dual-tubing screen completion technology has increased the production of CBM horizontal wells from four aspects, such as hydraulic impact, carrying pulverized coal, chemical gel breaking of drilling fluid, and stress permeation, so as to help the efficient development of CBM in Fukang mining area. Based on the technical characteristics of dual-tubing screen completion, the applicability and mechanism of this technology for the development of CBM in Fukang mining area is discussed from four advantages: reservoir coal body structure, reservoir permeability recovery, reservoir pore fracture expansion, and reservoir structure, and has guiding and reference significance for the efficient development of CBM under similar reservoir geological conditions in Xinjiang.

Cite this article

Long ZHANG , Yibing WANG , Bao’an XIAN , Yafei ZHANG , Zhanglong TAN , Tuersong HAERHENG , Hao SUN , Guan WANG , Jintao ZHANG . Applicability and mechanism of dual-tubing screen completion technology for Fukang Mining Area in Xinjiang[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(4) : 633 -642 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.011

References

[1] 阮传明, 张丽新, 周茹, 等. 新疆主要煤田煤层气赋存和开发特点及勘查规划建议[J]. 西部探矿工程, 2010, 22(2):144-147.
[1] RUAN Chuanming, ZHANG Lixin, ZHOU Ru, et al. Occurrence and development characteristics of coalbed methane in major coal fields in Xinjiang and suggestions for exploration planning[J]. West-China Exploration Engineering, 2010, 22(2): 144-147.
[2] 庚勐, 陈浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6):64-68.
[2] GENG Meng, CHEN Hao, CHEN Yanpeng, et al. The fourth round of national coalbed methane resource evaluation methods and results[J]. Coal Science and Technology, 2018, 46(6): 64-68.
[3] 陶小晚, 王俊民, 胡国艺, 等. 新疆煤层气勘探开发现状及展望[J]. 天然气地球科学, 2009, 20(3):454-459.
[3] TAO Xiaowan, WANG Junmin, HU Guoyi, et al. Current situation and prospect of coalbed methane exploration and development in Xinjiang[J]. Natural Gas Geoscience, 2009, 20(3): 454-459.
[4] 周梓欣. 新疆煤层气资源/储量估算问题研究[J]. 中国煤层气, 2017, 14(2):35-39.
[4] ZHOU Zixin. Research on the estimation of coalbed methane resources/reserves in Xinjiang[J]. China Coalbed Methane, 2017, 14(2): 35-39.
[5] 曹运兴, 石玢, 田林, 等. 大倾角厚煤层煤层气开发水平井方位优化和实践——以新疆阜康矿区为例[J]. 煤田地质与勘探, 2018, 46(2):90-96.
[5] CAO Yunxing, SHI Ying, TIAN Lin, et al. Orientation optimization and practice of horizontal wells in the development of coalbed methane in large-dip thick coal seams—taking the Fukang mining area in Xinjiang as an example[J]. Coal Geology & Exploration, 2018, 46(2): 90-96.
[6] 姚刚, 刘强. 阜康煤矿区地质构造特征及瓦斯赋存规律研究[J]. 煤炭与化工, 2014, 37(5):98-100.
[6] YAO Gang, LIU Qiang. Research on geological structure characteristics and gas occurrence law in Fukang coal mining area[J]. Coal and Chemical Industry, 2014, 37(5): 98-100.
[7] 霍少磊. 新疆煤层气开发相关技术问题探讨[J]. 煤, 2011, 20(5):55-56.
[7] HUO Shaolei. Discussion on technical issues related to Xinjiang coalbed methane development[J]. Coal, 2011, 20(5): 55-56.
[8] MAVOR M J, 黄鹂, 刘成根. 煤层气井裸眼完井技术最新进展[J]. 天然气勘探与开发, 1995, 18(1):42-46.
[8] MAVOR M J, HUANG Li, LIU Chenggen. The latest development of open-hole completion technology for coalbed methane wells[J]. Natural Gas Exploration and Development, 1995, 18(1): 42-46.
[9] 吕志凯, 何顺利, 罗富平, 等. 射孔水平井分段压裂起裂压力理论研究[J]. 石油钻探技术, 2011, 39(4):72-76.
[9] LYU Zhikai, HE Shunli, LUO Fuping, et al. Theoretical study on the initiation pressure of staged fracturing in perforated horizontal wells[J]. Petroleum Drilling Techniques, 2011, 39(4): 72-76.
[10] 彪仿俊, 刘合, 张劲, 等. 螺旋射孔条件下地层破裂压力的数值模拟研究[J]. 中国科学技术大学学报, 2011, 41(3):219-226.
[10] BIAO Fangjun, LIU He, ZHANG Jin, et al. Numerical simulation of formation fracture pressure under spiral perforation conditions[J]. Journal of University of Science and Technology of China, 2011, 41(3): 219-226.
[11] 杨刚, 鲜保安, 毕延森, 等. 煤层气超短半径水平井筛管完井技术研究[J]. 煤炭科学技术, 2019, 47(3):175-181.
[11] YANG Gang, XIAN Bao'an, BI Yansen, et al. Research on screen completion technology for ultra-short radius horizontal wells in coalbed methane[J]. Coal Science and Technology, 2019, 47(3): 175-181.
[12] 申瑞臣, 时文, 徐义, 等. 煤层气U型井PE筛管完井泵送方案[J]. 中国石油大学学报(自然科学版), 2012, 36(5):96-99.
[12] SHEN Ruichen, SHI Wen, XU Yi, et al. Completion and pumping scheme of PE screen for coalbed methane U-shaped well[J]. Journal of China University of Petroleum(Natural Science Edition), 2012, 36(5): 96-99.
[13] 付利, 申瑞臣, 苏海洋, 等. 煤层气水平井完井用塑料筛管优化设计[J]. 石油机械, 2012, 40(8):47-51.
[13] FU Li, SHEN Ruichen, SU Haiyang, et al. Optimal design of plastic screens for horizontal well completion in coalbed methane[J]. China Petroleum Machinery, 2012, 40(8): 47-51.
[14] 黄中伟, 李根生, 闫相祯, 等. 煤层气井钢质筛管与非金属筛管强度对比实验[J]. 石油勘探与开发, 2012, 39(4):489-493.
[14] HUANG Zhongwei, LI Gensheng, YAN Xiangzhen, et al. Strength comparison experiment between steel screen and non-metallic screen in coalbed methane wells[J]. Petroleum Exploration and Development, 2012, 39(4): 489-493.
[15] 时文, 申瑞臣, 屈平, 等. 煤层气井完井用PE筛管的地质适应性分析[J]. 天然气工业, 2013, 33(4):85-90.
[15] SHI Wen, SHEN Ruichen, QU Ping, et al. Geological adaptability analysis of PE sieve pipe for completion of coal-bed methane well[J]. Natural Gas Industry, 2013, 33(4): 85-90.
[16] 毕延森, 鲜保安, 高德利. 煤层气T型水平井柔性筛管泵送下入技术研究[J]. 煤炭科学技术, 2019, 47(11):170-175.
[16] BI Yansen, XIAN Bao'an, GAO Deli. Research on flexible sieve pipe pumping technology of T-type horizontal well of coal-bed methane[J]. Coal Science and Technology, 2019, 47(11): 170-175.
[17] 毕延森, 鲜保安, 张晓斌. 煤层气水平井玻璃钢筛管完井工艺技术[J]. 煤炭科学技术, 2016, 44(5):106-111.
[17] BI Yansen, XIAN Bao'an, ZHANG Xiaobin. Process technology of FRP sieve pipe completion technology for horizontal well of coal-bed methane[J]. Coal Science and Technology, 2016, 44(5): 106-111.
[18] 祁斌. 阜康矿区煤层气开发地质特征与钻井选型[J]. 中国煤层气, 2015, 12(3):23-25.
[18] QI Bin. Geological characteristics and drilling selection of coalbed methane development in Fukang mining area[J]. China Coalbed Methane, 2015, 12(3): 23-25.
[19] XIAN B A, LIU G F, BI Y S, et al. Coalbed methane recovery enhanced by screen pipe completion and jet flow washing of horizontal well double tubular strings[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104430.
[20] 周梓欣, 王一兵, 崔德广, 等. 准南煤田东段煤层气开发钻完井技术现状及发展方向[J]. 中国煤层气, 2022, 19(1):3-7.
[20] ZHOU Zixin, WANG Yibing, CUI Deguang, et al. Current situation and development direction of drilling and completion technology for coalbed methane development in the eastern section of Zhunnan Coalfield[J]. China Coalbed Methane, 2022, 19(1): 3-7.
[21] 汤达祯, 杨曙光, 唐淑玲, 等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报, 2021, 46(8):2412-2425.
[21] TANG Dazhen, YANG Shuguang, TANG Shuling, et al. Progress in coalbed methane exploration and development and geological research in the Junggar Basin[J]. Journal of China Coal Society, 2021, 46(8): 2412-2425.
[22] 刘向君, 叶仲斌, 陈一健. 岩石弱面结构对井壁稳定性的影响[J]. 天然气工业, 2002, 22(2):41-42.
[22] LIU Xiangjun, YE Zhongbin, CHEN Yijian. Influence of rock weak plane structure on wellbore stability[J]. Natural Gas Industry, 2002, 22(2): 41-42.
[23] 李术才, 朱维申. 复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J]. 岩石力学与工程学报, 1999, 18(2):24-28.
[23] LI Shucai, ZHU Weishen. Research on fracture damage mechanism of intermittently jointed rock mass under complex stress state and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 24-28.
[24] 屈平, 申瑞臣, 杨恒林, 等. 节理煤层井壁稳定性的评价模型[J]. 石油学报, 2009, 30(3):455-459.
[24] QU Ping, SHEN Ruichen, YANG Henglin, et al. Evaluation model of joint coal seam wellbed stability[J]. Acta Petrolei Sinica, 2009, 30(3): 455-459.
[25] 康颖安. 断裂力学的发展与研究现状[J]. 湖南工程学院学报(自然科学版), 2006, 16(1):39-42.
[25] KANG Ying'an. Development and research status of fracture mechanics[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2006, 16(1): 39-42.
[26] 葛修润, 卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报, 1992, 14(3):56-60.
[26] GE Xiurun, LU Yingfa. Discussion on rock fatigue failure and irreversible deformation under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 56-60.
[27] 金解放, 李夕兵, 邱灿, 等. 岩石循环冲击损伤演化模型及静载荷对损伤累积的影响[J]. 岩石力学与工程学报, 2014, 33(8):1662-1671.
[27] JIN Jiefang, LI Xibing, QIU Can, et al. The damage evolution model of rock cyclic impact and the effect of static load on damage accumulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1662-1671.
[28] 吴斌, 安庆, 杜世涛. 新疆库拜煤田煤层气开发利用先导性试验区井型探索[J]. 中国煤层气, 2020, 17(1):3-8.
[28] WU Bin, AN Qing, DU Shitao. Exploration of well types in the pilot test area for coalbed methane development and utilization in Kubai coalfield, Xinjiang[J]. China Coalbed Methane, 2020, 17(1): 3-8.
[29] 蒲一帆, 汤达祯, 陶树, 等. 新疆阜康地区多煤层组合条件下开发层段评价优选[J]. 煤炭学报, 2021, 46(7):2321-2330.
[29] PU Yifan, TANG Dazhen, TAO Shu, et al. Evaluation and optimization of development intervals under the condition of multi-coal seam combination in Fukang area, Xinjiang[J]. Journal of China Coal Society, 2021, 46(7): 2321-2330.
[30] 王生维, 王峰明, 侯光久, 等. 新疆阜康白杨河矿区急倾斜煤层的煤层气开发井型[J]. 煤炭学报, 2014, 39(9):1914-1918.
[30] WANG Shengwei, WANG Fengming, HOU Guangjiu, et al. Well type of coalbed methane development in steeply inclined coal seams in Baiyanghe mining area of Fukang, Xinjiang[J]. Journal of China Coal Society, 2014, 39(9): 1914-1918.
[31] 张波, 张彬, 陈必武, 等. 煤层气水平井筛管完井工艺实践[J]. 煤炭技术, 2017, 36(11):50-51.
[31] ZHANG Bo, ZHANG Bin, CHEN Biwu, et al. Practice of screen completion technology in horizontal coalbed methane wells[J]. Coal Technology, 2017, 36(11): 50-51.
[32] 王超文, 彭小龙, 朱苏阳, 等. 大倾角厚煤层煤层气开采井型优化及布井方法[J]. 岩石力学与工程学报, 2019, 38(2):313-320.
[32] WANG Chaowen, PENG Xiaolong, ZHU Suyang, et al. Well type optimization and well layout method for coalbed methane production in thick coal seam with large dip angle[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 313-320.
[33] 杨亿, 刘蒙蒙. 乌鲁木齐矿区煤层气井完井方式优选[J]. 中国煤层气, 2021, 18(2):13-15.
[33] YANG Yi, LIU Mengmeng. Optimization of well completion methods for coalbed methane wells in Urumqi mining area[J]. China Coalbed Methane, 2021, 18(2): 13-15.
[34] 刘立军, 陈必武, 李宗源, 等. 华北油田煤层气水平井钻完井方式优化与应用[J]. 煤炭工程, 2019, 51(10):77-81.
[34] LIU Lijun, CHEN Biwu, LI Zongyuan, et al. Optimization and application of drilling and completion methods for coalbed methane horizontal wells in Huabei Oilfield[J]. Coal Engineering, 2019, 51(10): 77-81.
Outlines

/