Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 5: 703 - 710
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.001
Electricity substitution technology of drilling and completion electrification promote petroleum and gas industry to achieve “carbon peak and neutrality” targets
Received date: 2021-12-07
Online published: 2022-09-27
In recent years, extensive attention has been paid to the decarbonization of petroleum and gas exploration and related technologies at home and broad. The structural transformation of the energy industry of the oil and gas is one of the inevitable ways for China to achieve the “carbon peak and neutrality” targets. Under the prerequisite of energy reform to accelerate the achievement of the targets, the energy reform direction and pathway for the oil and gas technology have been analyzed. Taking the project of the electricity substitution technology in the PetroChina Southwest Oil and Gasfield Company as an example, the changes in terms of environmental pollution and energy consumption before and after the implementation of the project are compared. Then, it focuses on the necessity of the drilling and completion electrification transformation and the advantages of the drilling and completion are emphasized. Based on the analyses and summary of the key and difficulties in the practice process, the key technologies that restrict the development of electricity substitution technology and the breakthrough points of the future researches are put forward, which provides reference for the application of “electricity substitution” technology in oil and gas exploration and development under the “dual-carbon” targets.
Liehui ZHANG , An’an ZHANG , Yi’nan CHEN , Ning DING , Hai LI , Guanglong QU , Tao WANG , Shaobin YAO . Electricity substitution technology of drilling and completion electrification promote petroleum and gas industry to achieve “carbon peak and neutrality” targets[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(5) : 703 -710 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.001
[1] | 杨宇, 于宏源, 鲁刚, 等. 世界能源百年变局与国家能源安全[J]. 自然资源学报, 2021, 35(11):2803-2820. |
[1] | YANG Yu, YU Hongyuan, LU Gang, et al. Interview on the unprecedented changes of energy geopolitics and national energy security[J]. Journal of Natural Resources, 2020, 35(11): 2803-2820. |
[2] | McKinsey & Company. Global energy perspective 2021[R/OL]. (2021-01-12)[2021-12-07]. https://ishare.iask.sina.com.cn/f/12D4cjF30fOv.html. |
[3] | 罗佐县. 碳中和激活多领域天然气需求潜力[J]. 能源, 2020, 142(11):30-32. |
[3] | LUO Zuoxian. Neutralization potential of natural gas demand[J]. Energy, 2020, 142(11): 30-32 |
[4] | 肖潇, 肖溢. 中国的海外能源战略差异化研究——以中东和东盟LNG进口为例[J]. 科技经济市场, 2016, 21(5):194-197. |
[4] | XIAO Xiao, XIAO Yi. China’s overseas energy strategy: Taking LNG imports from the Middle East and ASEAN as examples[J]. KEJI JINGJI SHICHANG, 2016, 21(5): 194-197. |
[5] | 帅石金, 唐韬, 赵彦光, 等. 柴油车排放法规及后处理技术的现状与展望[J]. 汽车安全与节能学报, 2012, 3(3):200-217. |
[5] | SHUAI Shijin, TANG Tao, ZHAO Yanguang, et al. State of the art and outlook of diesel emission regulations and aftertreatment technologies[J]. Journal of Automotive Safety and Energy, 2012, 3(3): 200-217. |
[6] | 权春锋. 柴油机尾气处理技术发展分析[J]. 汽车实用技术, 2020, 24(8):82-84. |
[6] | QUAN Chunfeng. Development analysis of diesel engine exhaust treatment technology[J]. Automobile Applied Technology, 2020, 24(8): 82-84. |
[7] | KELLENS K, DEWULF W, OVERCASH M, et al. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description[J]. The International Journal of Life Cycle Assessment, 2012, 17(1): 69-78. |
[8] | 韩勇, 任艳辉, 张悦, 等. 石油钻井机械“电代油”配套技术研究[J]. 中国设备工程, 2020,(4):190-192. |
[8] | HAN Yong, REN Yanhui, ZHANG Yue, et al. Researching on electric drilling machinery technology[J]. China Plant Engineering, 2020, 36(4): 190-192. |
[9] | PAPAGIANNAKIS R, KRISHNAN S, RAKOPOULOS D, et al. A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads[J]. Fuel, 2017, 202: 675-687. |
[10] | GIACHINO A. PRIVATE EQUITY ENERGY BETS BURN INVESTORS[R/OL]. (2021-04-22) [2021-12-07]. https://pestakeholder.org/wp-content/uploads/2021/04/PESP_Report_PrivateEnergy_March2021-v4-2.pdf. |
[11] | JOHNSON D, HELTZEL R, NIX A. Trends in unconventional well development—methane emissions associated with the use of dual fuel and dedicated natural gas engines[J]. Energy Technology, 2015, 2(12): 988-995. |
[12] | 张东科, 李树生, 蔚富海, 等. 双燃料发动机的研制开发及其应用[C]// 中国内燃机学术年会暨测试技术分会,油品与清洁燃料分会和吉林省内燃机学会联合学术年会, 2012. ZHANGDongke, LIShusheng, WEIFuhai, et al. Development and application of dual fuel engine[C]// Chinese Society Internal Combustion Engine Academic & testing technology annual conference, Oil products and clean fuels & Jilin internal combustion engine society joint academic annual meeting, 2012. |
[13] | 王京龙. 气体钻井安全监控系统在胜利油田的应用[J]. 中小企业管理与科技(下旬刊), 2011, 4(6):213. |
[13] | WANG Jinglong. Application of gas drilling safety monitoring system in Shengli Oilfield[J]. Management & Technology of SME, 2011, 4(6): 213. |
[14] | HUNTINGTON H G, BHARGAVA A, DANIELS D, et al. Key findings from the core North American scenarios in the EMF34 intermodel comparison[J]. Energy Policy, 2020, 144: 111599. |
[15] | 蒋合艳, 陆俊康, 武卫卫, 等. 电驱动钻机气控系统的优化设计[J]. 液压气动与密封, 2019, 39(11):35-39. |
[15] | JIANG Heyan, LU Junkang, WU Weiwei, et al. Optimization design of pneumatic control system of electric drive drilling rig[J]. Hydraulics Pneumatics & Seals, 2019, 39(11): 35-39. |
[16] | 刘志强, 宋朝阳, 程守业, 等. 我国反井钻机钻井技术与装备发展历程及现状[J]. 煤炭科学技术, 2021, 49(1):32-65. |
[16] | LIU Zhiqiang, SONG Zhaoyang, CHEN Shouye, et al. Development history and status quo of raise boring technologies and equipment in China[J]. Coal Science and Technology, 2021, 49(1): 32-65. |
[17] | 王代华, 万小宏, 李国孝, 等. 电驱动钻机控制系统配置方案探讨[J]. 石油机械, 2001, 29(9):53-56. |
[17] | WANG Daihua, WAN Xiaohong, LI Guoxiao, et al. Discussion on configuration scheme of electric drive drilling rig control system[J]. China Petroleum Machinery, 2001, 29(9): 53-56. |
[18] | 张健, 周霞, 刘旭, 等. 机械钻机电代油节能减排效果测试方法研究[J]. 钻采工艺, 2020, 43(5):82-83. |
[18] | ZHANG Jian, ZHOU Xia, LIU Xu, et al. Research on energy-saving and emission reduction effect test of replacing oil by electricity in machinery drilling rig[J]. Drilling & Production Technology, 2020, 43(5): 82-83. |
[19] | 王彤, 李丹, 李春秋. 油田钻机驱动“以电代油”的应用及效益[J]. 电力需求侧管理, 2014, 16(5):37-38. |
[19] | WANG Tong, LI Dan, LI Chunqiu. Application and benefit of "replacing oil with electricity" in oilfield drilling rig drive[J]. Power Demand Side Management, 2014, 16(5): 37-38. |
[20] | 邢洁, 宋男哲, 李婉婷, 等. 基于STIRPAT模型的黑龙江省“十四五”期间碳强度目标研究[J]. 环境科学与管理, 2021, 46(8):77-81. |
[20] | XING Jie, SONG Nanzhe, LI Wanting, et al. Study on the carbon intensity reduction target in Heilongjiang Province during the 14th Five-Year Plan Period based on STIRPAT model[J]. Environmental Science and Management, 2021, 46(8): 77-81. |
[21] | 朱发根, 单葆国, 马丁, 等. 基于CO2减排目标的2050年全球能源需求展望[J]. 中国电力, 2016, 49(3):34-38. |
[21] | ZHU Fagen, SHAN Baoguo, MA Ding, et al. Global energy demand prospect based on CO2 emission reduction target in 2050[J]. Electric Power, 2016, 49(3): 34-38. |
[22] | 翁琳, 陈剑波. 光伏系统基于全生命周期碳排放量计算的环境与经济效益分析[J]. 上海理工大学学报, 2017, 39(3):282-288. |
[22] | WENG Lin, CHEN Jianbo. Environment and economic analysis on carbon dioxide emissions calculation in the life cycle of a photovoltaic system[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(3): 282-288. |
[23] | 贺甲元, 程洪, 向红, 等. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化[J]. 石油钻采工艺, 2021, 43(2):233-238. |
[23] | HE Jiayuan, CHENG Hong, XIANG Hong, et al. Optimizing the displacement of temporary plugging and diversion fracturing of the carbonate reservoirs in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(2): 233-238. |
[24] | 孙惠娟, 蒙锦辉, 彭春华. 风-光-水-碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11):4040-4049. |
[24] | SUN Huijuan, MENG Jinhui, PENG Chunhua. Coordinated optimization scheduling of multi-region virtual power plant with wind-power-photovoltaic-hydropower-carbon capture units[J]. Power System Technology, 2019, 43(11):4040-4049. |
[25] | ZHANG N, HU Z, DAI D, et al. Unit commitment model in smart grid environment considering carbon emissions trading[J]. IEEE Transactions on Smart Grid, 2015, 7(1): 420-427. |
[26] | 郭尊, 李庚银, 周明. 计及碳交易机制的电-气联合系统快速动态鲁棒优化运行[J]. 电网技术, 2020, 44(4):1220-1228. |
[26] | GUO Zun, LI Gengyin, ZHOU Ming. Fast and dynamic robust optimization of integrated electricity-gas system operation with carbon trading[J]. Power System Technology, 2020, 44(4): 1220-1228. |
[27] | 张斌, 李磊, 邱勇潮, 等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业, 2020, 40(5):50-57. |
[27] | ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natural Gas Industry, 2020, 40(5): 50-57. |
[28] | 童征, 展恩强, 刘颖, 等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济, 2020, 28(7):53-62. |
[28] | TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7): 53-62. |
/
〈 | 〉 |