Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 5: 726 - 733
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.003
Research progress of assistants for reducing CO2-crude oil minimum miscible pressure
Received date: 2021-07-13
Online published: 2022-09-27
The minimum miscible pressure (MMP) of CO2 flooding is a crucial parameter to judge whether miscible flooding is attainable. In order to reduce the application threshold of miscible flooding, the MMP between CO2 and crude oil needs to be reduced urgently. Adding miscible flooding assistants to oil reservoir is an effective means for minimum miscible pressure reduction. At present, according to the elements contained, the miscible flooding assistants can be divided into three categories including fluorocarbon, siloxane, and hydrocarbon (oxygenated). In order to reduce the cost and improve the MMP reduction performance, the hydrocarbon structure should be added to the fluorocarbon assistants to make the assistants develop in the direction of mixing type. The hydrocarbon assistants have sound MMP reduction performances and room for improvement. The key is to find a suitable CO2-phlic structure. Computer simulation is also a vital means to study micro mechanism and assist structure designing. Compared with fluorocarbon and siloxane, the cost of hydrocarbon (oxygenated) is lower, and it has the most application potential from the prospective of cost. At present, the main factor affecting the large-scale application of miscible assistants is the limitation of cost. The promotion and application in the future needs the close cooperation of petroleum and chemical practitioners. In this paper, the mechanisms of CO2 miscible flooding assistants reducing MMP are introduced. The structures of existing miscible flooding assistants, MMP reduction effectiveness are summarized, and the influencing factors on MMP reduction efficiency are analyzed. The developing directions CO2 miscible flooding assistants designing are prospected.
Ping GUO , Wanbo ZHANG , Na JIA , Fu CHEN , Huang LIU , Zhouhua WANG , Xingbo GE . Research progress of assistants for reducing CO2-crude oil minimum miscible pressure[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(5) : 726 -733 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.003
[1] | 李阳, 吴胜和, 侯加根, 等. 油气藏开发地质研究进展与展望[J]. 石油勘探与开发, 2017, 44(4):569-579. |
[1] | LI Yang, WU Shenghe, HOU Jiagen, et al. Progress and prospects of reservoir development geology[J]. Petroleum Exploration and Development, 2017, 44(4): 569-579. |
[2] | GODOI J M A, MATAI P H L D. Enhanced oil recovery with carbon dioxide geosequestration: First steps at Pre-salt in Brazil[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(3): 1429-1441. |
[3] | YÁÑEZ E, RAMÍREZ A, NÚÑEZ-LÓPEZ V, et al. Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102938. |
[4] | 胡滨, 胡文瑞, 李秀生, 等. 老油田二次开发与CO2驱油技术研究[J]. 新疆石油地质, 2013, 34(4):436-440. |
[4] | HU Bin, HU Wenrui, LI Xiusheng, et al. Research on secondary development of old oilfields and CO2 flooding technology[J]. Xinjiang Petroleum Geology, 2013, 34(4): 436-440. |
[5] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1):20-28. |
[5] | QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. |
[6] | CHOUBINEH A, HELALIZADEH A, WOOD D A. The impacts of gas impurities on the minimum miscibility pressure of injected CO2-rich gas-crude oil systems and enhanced oil recovery potential[J]. Petroleum Science, 2019, 16(1): 117-126. |
[7] | HASSAN A, ELKATATNY S, ABDULRAHEEM A. Intelligent prediction of minimum miscibility pressure (MMP) during CO2 flooding using artificial intelligence techniques[J]. Sustainability, 2019, 11(24): 7020. |
[8] | CHEN H, ZHANG C, JIA N H, et al. A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach[J]. Fuel, 2021, 290: 120048. |
[9] | HILL L B, LI X C, WEI N. CO2-EOR in China: A comparative review[J]. International Journal of Greenhouse Gas Control, 2020, 103: 103173. |
[10] | LIU J R, SUN L, LI Z Z, et al. Experimental study on reducing CO2-oil minimum miscibility pressure with hydrocarbon agents[J]. Energies, 2019, 12(10): 1975. |
[11] | MAHDAVI E, ZEBARJAD F S, TAGHIKHANI V, et al. Effects of paraffinic group on interfacial tension behavior of CO2-asphaltenic crude oil systems[J]. Journal of Chemical & Engineering Data, 2014, 59(8): 2563-2569. |
[12] | CHO J, LEE K S. Effects of hydrocarbon solvents on simultaneous improvement in displacement and sweep efficiencies during CO2-enhanced oil recovery[J]. Petroleum Science and Technology, 2016, 34(4): 359-365. |
[13] | 吴莎, 何佳, 李遵照, 等. 降低CO2驱最小混相压力的调节剂研究[J]. 中国科技论文, 2015, 10(18):2161-2164. |
[13] | WU Sha, HE Jia, LI Zunzhao, et al. Studies on the chemical agent system for reducing in the minimal miscibility pressure of CO2 flooding[J]. China Sciencepaper, 2015, 10(18): 2161-2164. |
[14] | SARDARI F S, MOVAGHAR M R K. A simulation approach to achieve the best miscible enrichment in gas flooding and chemical injection process for enhanced oil recovery[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(2): 230-246. |
[15] | LUO H, ZHANG Y C, FAN W Y, et al. Effects of the non-ionic surfactant (CiPOj) on the interfacial tension behavior between CO2 and crude oil[J]. Energy & Fuels, 2018, 32(6): 6708-6712. |
[16] | LIAO P L, LIU Z Y, LIU K E D, et al. Polyesters-based oil-CO2 amphiphiles: Design and miscible promoting ability[J]. Acta Physico-Chimica Sinica, 2019, 36(10): 1907034. |
[17] | 杨思玉, 廉黎明, 杨永智, 等. 用于CO2驱的助混剂分子优选及评价[J]. 新疆石油地质, 2015, 36(5):555-559. |
[17] | YANG Siyu, LIAN Liming, YANG Yongzhi, et al. Molecular optimization design and evaluation of miscible processing aids applied to CO2 flooding[J]. Xinjiang Petroleum Geology, 2015, 36(5): 555-559. |
[18] | HEMMATI-SARAPARDEH A, AYATOLLAHI S, GHAZANFARI M H, et al. Experimental determination of interfacial Tension and miscibility of the CO2-crude oil system: Temperature, pressure, and composition effects[J]. Journal of Chemical & Engineering Data, 2014, 59(1): 61-69. |
[19] | GONG H J, QIN X J, SHANG S X, et al. Enhanced shale oil recovery by the huff and puff method using CO2 and cosolvent mixed fluids[J]. Energy & Fuels, 2020, 34(2): 1438-1446. |
[20] | WEI B, GAO H, PU W F, et al. Interactions and phase behaviors between oleic phase and CO2 from swelling to miscibility in CO2-based enhanced oil recovery (EOR) process: A comprehensive visualization study[J]. Journal of Molecular Liquids, 2017, 232: 277-284. |
[21] | 贾储源. 二氧化碳驱表面活性剂的设计与合成[D]. 吉林: 吉林大学, 2014. |
[21] | JIA Chuyuan. Design and preparation of surfactants for CO2 EOR[D]. Jilin: Jilin University, 2014. |
[22] | DRAMÉ A, DE GIVENCHY E T, DIENG S Y, et al. One F-octyl versus two F-butyl chains in surfactant aggregation behavior[J]. Langmuir, 2013, 29(48): 14815-14822. |
[23] | MOHAMED A, SAGISAKA M, GUITTARD F, et al. Low fluorine content CO2-philic surfactants[J]. Langmuir, 2011, 27(17): 10562-10569. |
[24] | SAGISAKA M, ONO S, JAMES C, et al. Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2[J]. Colloids and Surfaces B: Biointerfaces, 2018, 168: 201-210. |
[25] | MOHAMED A, ARDYANI T, BAKAR S A, et al. Effect of surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants[J]. The Journal of Supercritical Fluids, 2016, 116: 148-154. |
[26] | 王占艳. 亲CO2表面活性剂的合成及其萃取性能研究[D]. 大连: 大连理工大学, 2018. |
[26] | WANG Zhanyan. Synthesis of CO2-philic surfactants and their extraction porperties in oil recovery and dry-cleaning[D]. Dalian: Dalian University of Technology, 2018. |
[27] | 史清照. 增强油-scCO2相互作用的界面活性剂的研究[D]. 大连: 大连理工大学, 2017. |
[27] | SHI Qingzhao. The interfacial agents for enhancing oil-scCO2 interaction[D]. Dalian: Dalian University of Technology, 2017. |
[28] | 郭平, 焦松杰, 陈馥, 等. 非离子低分子表面活性剂优选及驱油效率研究[J]. 石油钻采工艺, 2012, 34(2):81-84. |
[28] | GUO Ping, JIAO Songjie, CHEN Fu, et al. Optimization and oil displacement efficiency of non-ionic low molecular surfactant[J]. Oil Drilling & Production Technology, 2012, 34(2): 81-84. |
[29] | GUO P, HU Y S, QIN J S, et al. Use of oil-soluble surfactant to reduce minimum miscibility pressure[J]. Petroleum Science and Technology, 2017, 35(4): 345-350. |
[30] | 赵跃军, 宋考平, 范广娟, 等. 酯类化合物降低原油与二氧化碳体系最小混相压力实验[J]. 石油学报, 2017, 38(9):1066-1072. |
[30] | ZHAO Yuejun, SONG Kaoping, FAN Guangjuan, et al. The experiment for reducing the minimum miscible pressure of crude oil and carbon dioxide system with ester compounds[J]. Acta Petrolei Sinica, 2017, 38(9): 1066-1072. |
[31] | 刘泽宇, 廖培龙, 马骋, 等. 一种便捷、可视化的CO2驱助混剂评价方法—高度上升法及其在油田化学中的应用[J]. 油田化学, 2020, 37(3):525-530. |
[31] | LIU Zeyu, LIAO Peilong, MA Cheng, et al. A convenient and visualized method to estimate CO2 miscible flooding assistant-rising height test and its applications in oilfield chemistry[J]. Oilfield Chemistry, 2020, 37(3): 525-530. |
[32] | SAGISAKA M, SAITO T, YOSHIZAWA A, et al. Water-in-CO2 microemulsions stabilized by fluorinated cation-anion surfactant pairs[J]. Langmuir, 2019, 35(9): 3445-3454. |
[33] | DONG Z X, LI Y, LIN M Q, et al. A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions[J]. Petroleum Science, 2013, 10(1): 91-96. |
[34] | 董朝霞, 崔波, 李翼, 等. 超临界CO2微乳液与烷烃的最小混相压力研究[J]. 石油化工高等学校学报, 2013, 26(1):40-44. |
[34] | DONG Zhaoxia, CUI Bo, LI Yi, et al. MMP of supercritical carbon dioxide microemulsion and alkanes[J]. Journal of Petrochemical Universities, 2013, 26(1): 40-44. |
[35] | MOHAMED A, ARDYANI T, SAGISAKA M, et al. Economical and efficient hybrid surfactant with low fluorine content for the stabilisation of water-in-CO2 microemulsions[J]. The Journal of Supercritical Fluids, 2015, 98: 127-136. |
[36] | ZHANG C, LI Z M, LI S Y, et al. Enhancing sodium bis(2-ethylhexyl) sulfosuccinate injectivity for CO2 foam formation in low-permeability cores: dissolving in CO2 with ethanol[J]. Energy & Fuels, 2018, 32(5): 5846-5856. |
[37] | SHI Q Z, CHENG J C, LIU Y, et al. Effects of non-ionic surfactants on the material exchange between crude oil and scCO2[J]. Journal of Molecular Liquids, 2018, 269: 23-28. |
[38] | DING M C, WANG Y F, WANG W, et al. Potential to enhance CO2 flooding in low permeability reservoirs by alcohol and surfactant as co-solvents[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106305. |
[39] | 王芳, 罗辉, 任玉飞, 等. 脂肪醇聚氧丙烯醚对CO2驱最小混相压力的影响[J]. 大庆石油地质与开发, 2016, 35(5):118-122. |
[39] | WANG Fang, LUO Hui, REN Yufei, et al. Influences of fatty alcohol polyoxypropylene ether on the minimum miscibility pressure of carbon dioxide flooding[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(5): 118-122. |
[40] | 王芳, 罗辉, 范维玉, 等. 非离子表面活性剂分子结构对CO2驱混相压力的影响[J]. 油田化学, 2017, 34(2):270-273. |
[40] | WANG Fang, LUO Hui, FAN Weiyu, et al. Effect of the structure of nonionic surfactant on the miscibility pressure of CO2 flooding[J]. Oilfield Chemistry, 2017, 34(2): 270-273. |
[41] | YANG Z H, WU W, DONG Z X, et al. Reducing the minimum miscibility pressure of CO2 and crude oil using alcohols[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 105-112. |
[42] | ZHANG C, XI L H, WU P K, et al. A novel system for reducing CO2-crude oil minimum miscibility pressure with CO2-soluble surfactants[J]. Fuel, 2020, 281: 118690. |
[43] | RAVEENDRAN P, WALLEN S L. Cooperative C-H···O hydrogen bonding in CO2-lewis base complexes: Implications for solvation in supercritical CO2[J]. Journal of the American Chemical Society, 2002, 124(42): 12590-12599. |
[44] | YANG Z H, YIN T H, ZHANG F F, et al. Investigation on dispersion properties of CO2 and ester solvent mixtures using in situ FTIR spectroscopy[J]. RSC Advances, 2020(10): 18192-18199. |
[45] | SARBU T, STYRANEC T, BECKMAN E J. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures[J]. Nature, 2000, 405(6783): 165-168. |
[46] | KILIC S, MICHALIK S, WANG Y, et al. Effect of grafted lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6415-6424. |
[47] | STOYCHEV I, PETERS F, KLEINER M, et al. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide[J]. The Journal of Supercritical Fluids, 2012, 62: 211-218. |
[48] | KILIC S, MICHALIK S, WANG Y, et al. Phase behavior of oxygen-containing polymers in CO2[J]. Macromolecules, 2007, 40(4): 1332-1341. |
[49] | AL HINAI N M, SAEEDI A, WOOD C D, et al. Experimental evaluations of polymeric solubility and thickeners for supercritical CO2 at high temperatures for enhanced oil recovery[J]. Energy & Fuels, 2018, 32(2): 1600-1611. |
[50] | EASTOE J, YAN C, MOHAMED A. Microemulsions with CO2 as a solvent[J]. Current Opinion in Colloid & Interface Science, 2012, 17(5): 266-273. |
[51] | CZAJKA A, HILL C, PEACH J, et al. Trimethylsilyl hedgehogs: A novel class of super-efficient hydrocarbon surfactants[J]. Physical Chemistry Chemical Physics, 2017, 19(35): 23869-23877. |
[52] | ALEXANDER S, SMITH G N, JAMES C, et al. Low-surface energy surfactants with branched hydrocarbon architectures[J]. Langmuir, 2014, 30(12): 3413-3421. |
[53] | ZHANG Y F, ZHU Z W, BAI Z G, et al. Incorporating a silicon unit into a polyether backbone-an effective approach to enhance polyether solubility in CO2[J]. RSC Advances, 2017, 7(27): 16616-16622. |
[54] | 徐凌霄. 新型亲CO2化合物的设计合成及其在超临界CO2中的溶解行为研究[D]. 武汉: 中南民族大学, 2013. |
[54] | XU Lingxiao. Design, synthesis of novel CO2-philic compound and investigation on their solubility behavior in supercritical CO2[D]. Wuhan: South-Central University for Nationalities, 2013. |
[55] | CHANG H H, YANG C C, LI X, et al. Ab initio analysis on the interaction of CO2 binding to peracetated D-glucopyranose[J]. Journal of Molecular Modeling, 2014, 20(6): 2259. |
[56] | RAVEENDRAN P, WALLEN S L. Sugar acetates as novel, renewable CO2-philes[J]. Journal of the American Chemical Society, 2002, 124(25): 7274-7275. |
[57] | 何金美, 王英雄, 秦张峰, 等. 取代基对糖类衍生物亲二氧化碳性的影响[J]. 化工新型材料, 2016, 44(2):129-131. |
[57] | HE Jinmei, WANG Yingxiong, QIN Zhangfeng, et al. Influence of substituent on CO2-philicity dependence of Sugar derivatives[J]. New Chemical Materials, 2016, 44(2): 129-131. |
/
〈 | 〉 |