Petroleum Reservoir Evaluation and Development >
2022 , Vol. 12 >Issue 5: 794 - 802
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.011
EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability
Received date: 2021-08-13
Online published: 2022-09-27
The implementation of CO2 flooding in heavy oil reservoirs with low-permeability is currently the main comprehensive utilization technology for enhanced oil recovery. However, due to the low viscosity and high mobility of CO2, CO2 flooding in heavy oil reservoirs is prone to premature gas channeling. For this reason, the feasibility of low permeability heavy oil reservoirs with CO2-viscosity reducer to reduce viscosity and improve mobility ratio has been explored, and the mechanism of the combined flooding of CO2 and water-soluble viscosity reducer for low-permeability heavy oil reservoirs to EOR is obtained. The results show that the KD-45A water-soluble viscosity reducer can only emulsify the surface of crude oil to reduce the viscosity without external stirring. The viscosity reduction effect is poor, but the viscosity reducer slug can improve the mobility ratio caused by viscosity differences, which can effectively control the CO2 rushing along the airflow channel. The O/W-shaped emulsion transition zone formed by the emulsification of the water-soluble viscosity reducer has a viscosity close to the water phase, which can prevent the fingering of the water-soluble viscosity reducer, so that the viscosity reducer slug has a more obvious control and displacement effect on CO2, and the swept area of CO2 is larger. The dissolution of CO2 in the viscosity reducer will reduce the interfacial tension of the CO2-viscosity reducer system, which can give full play to the synergy between the two displacement effect. The formation of carbonized water after CO2 dissolves in the viscosity reducer can greatly reduce the influence of gravity and viscosity differences on the swept area, forming a relatively stable and continuous displacement interface. The displacement mechanisms of the combined flooding system are synergistic and superimposed, which can significantly improve the recovery rate of heavy oil.
Deming GUO , Yi PAN , Yang SUN , Zhongtang CHAO , Xiaonan LI , Shisheng CHENG . EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(5) : 794 -802 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.011
[1] | 郭平, 苑志旺, 廖广志. 注气驱油技术发展现状与启示[J]. 天然气工业, 2009, 29(8):92-96. |
[1] | GUO Ping, YUAN Zhiwang, LIAO Guangzhi. Development status and enlightenment of gas injection and oil displacement technology[J]. Natural Gas Industry, 2009, 29(8): 92-96. |
[2] | 王舒华. 超临界CO2对原油性质影响规律研究[D]. 青岛: 中国石油大学(华东), 2014. |
[2] | WANG Shuhua. Research on the influence of supercritical CO2 on crude oil properties[D]. Qingdao: China University of Petroleum (East China), 2014. |
[3] | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6):1333-1338. |
[3] | ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333-1338. |
[4] | 周冰, 金之钧, 刘全有, 等. 苏北盆地黄桥地区富CO2流体对油气储-盖系统的改造作用[J]. 石油与天然气地质, 2020, 41(6):1151-1161. |
[4] | ZHOU Bing, JIN Zhijun, LIU Quanyou, et al. Alteration of reservoir caprock systems by using CO2 rich fluid in the Huangqiao area, North Jiangsu Basin[J]. Oil & Gas Geology, 2020, 41(6): 1151-1161. |
[5] | 何江川, 廖广志, 王正茂. 油田开发战略与接替技术[J]. 石油学报, 2012, 33(3):519-525. |
[5] | HE Jiangchuan, LIAO Guangzhi, WANG Zhengmao. Oilfield development strategy and replacement technology[J]. Acta Petrolei Sinica, 2012, 33(3): 519-525. |
[6] | 岳湘安, 赵仁保, 赵凤兰. 我国CO2提高石油采收率面临的技术挑战[J]. 中国科技论文在线, 2007(7):487-491. |
[6] | YUE Xiangan, ZHAO Renbao, ZHAO Fenglan. Technical challenges faced by my country's CO2 to improve oil recovery[J]. China Science and Technology Paper Online, 2007(7): 487-491. |
[7] | 王建波, 高云丛, 王科战. 腰英台特低渗透油藏CO2驱油井见气规律研究[J]. 断块油气田, 2013, 20(1):118-122. |
[7] | WANG Jianbo, GAO Yuncong, WANG Kezhan. Study on gas breakthrough law of CO2 flooding well in Yaoyingtai ultra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2013, 20(1): 118-122. |
[8] | 康志江, 李阳, 计秉玉, 等. 碳酸盐岩缝洞型油藏提高采收率关键技术[J]. 石油与天然气地质, 2020, 41(2):434-441. |
[8] | KANG Zhijiang, LI Yang, JI Bingyu, et al. Key technologies for EOR in fractured-vuggy carbonate reservoirs[J]. Oil & Gas Geology, 2020, 41(2): 434-441. |
[9] | 丁保东, 张贵才, 葛际江, 等. 普通稠油化学驱的研究进展[J]. 西安石油大学学报:自然科学版, 2011, 26(3):52-58. |
[9] | DING Baodong, ZHANG Guicai, GE Jijiang, et al. Research progress of ordinary heavy oil chemical flooding[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(3): 52-58. |
[10] | 张云宝, 卢祥国, 王婷婷, 等. 渤海油藏优势通道多级封堵与调驱技术[J]. 油气地质与采收率, 2018, 25(3):82-88. |
[10] | ZHANG Yunbao, LU Xiangguo, WANG Tingting, et al. Multi-stage plugging and profile control technology for dominant channels in Bohai oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 82-88. |
[11] | 杨森, 许关利, 刘平, 等. 稠油化学降黏复合驱提高采收率实验研究[J]. 油气地质与采收率, 2018, 25(5):80-86. |
[11] | YANG Sen, XU Guanli, LIU Ping, et al. Experimental study on enhanced oil recovery of heavy oil chemical viscosity reduction combined flooding[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 80-86. |
[12] | 汤明光, 裴海华, 张贵才, 等. 普通稠油化学驱油技术现状及发展趋势[J]. 断块油气田, 2012, 19(S1):44-48. |
[12] | TANG Mingguang, PEI Haihua, ZHANG Guicai, et al. Current status and development trend of ordinary heavy oil chemical flooding technology[J]. Fault Block Oil and Gas Field, 2012, 19(S1): 44-48. |
[13] | 姚同玉, 李继山. 稠油油藏化学驱实验研究[J]. 油田化学, 2010, 27(1):84-87. |
[13] | YAO Tongyu, LI Jishan. Experimental study on chemical flooding of heavy oil reservoirs[J]. Oilfield Chemistry, 2010, 27(1): 84-87. |
[14] | 陈泽华, 赵修太, 王增宝, 等. 乙二胺-HPAM与NaOH-HPAM体系提高稠油采收率的对比[J]. 石油学报(石油加工), 2015, 31(5):1156-1163. |
[14] | CHEN Zehua, ZHAO Xiutai, WANG Zengbao, et al. Comparison of ethylenediamine-HPAM and NaOH-HPAM systems in enhancing the recovery of heavy oil[J]. Acta Petrolei Sinica (Petroleum Processing), 2015, 31(5): 1156-1163. |
[15] | 束青林, 王宏, 孙建芳. 孤岛油田稠油油藏高轮次吞吐后提高采收率技术研究与实践[J]. 油气地质与采收率, 2010, 17(6):61-64. |
[15] | SHU Qinglin, WANG Hong, SUN Jianfang. Research and practice of enhanced oil recovery technology after high-cycle huff and puff in heavy oil reservoirs in Gudao Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(6): 61-64. |
[16] | 李宜强, 陈建勋, 金楚逸, 等. 砾岩油藏聚合物驱后二元和三元复合驱的优选[J]. 油气地质与采收率, 2017, 24(2):63-66. |
[16] | LI Yiqiang, CHEN Jianxun, JIN Chuyi, et al. Optimization of binary and ternary combination flooding after polymer flooding in conglomerate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2): 63-66. |
[17] | 吴伟. 特高温中低渗透油藏乳液表面活性剂驱提高采收率技术[J]. 油气地质与采收率, 2018, 25(2):72-76. |
[17] | WU Wei. Emulsion surfactant flooding technique for enhanced oil recovery in ultra-high temperature, low-permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 72-76. |
[18] | 张忠林, 王伟, 赵习森, 等. 注CO2对延长化子坪原油物性的影响[J]. 油田化学, 2019, 36(4):646-650. |
[18] | ZHANG Zhonglin, WANG Wei, ZHAO Xisen, et al. Effect of CO2 injection on physical properties of Huaziping crude oil in Yanchang Oilfield[J]. Oilfield Chemistry, 2019, 36(4): 646-650. |
[19] | 钱坤, 杨胜来, 窦洪恩, 等. 特低渗油藏不同CO2注入方式微观驱油特征[J]. 新疆石油地质, 2020, 41(2):204-208. |
[19] | QIAN Kun, YANG Shenglai, DOU Hong'en, et al. Micro-displacement characteristics of different CO_2 injection methods in ultra-low permeability reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(2): 204-208. |
[20] | 徐辉, 程秀梅, 易明华, 等. 金南油田地层原油相态及注CO2膨胀实验研究[J]. 非常规油气, 2020, 7(2):64-67. |
[20] | XU Hui, CHENG Xiumei, YI Minghua, et al. Experimental study on phase behavior and CO2 injection expansion of crude oil in Jinnan oilfield[J]. Unconventional Oil & Gas, 2020, 7(2): 64-67. |
[21] | 崔盈贤, 张健, 唐晓东, 等. 稠油氧化降黏微乳催化剂的研制与性能评价[J]. 油气地质与采收率, 2015, 22(2):107-111. |
[21] | CUI Yingxian, ZHANG Jian, TANG Xiaodong, et al. Development and performance evaluation of a microemulsion catalyst for heavy oil oxidation and viscosity reduction[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(2): 107-111. |
[22] | 王传飞, 吴光焕, 韦涛, 等. 薄层特超稠油油藏氮气与降黏剂联合蒸汽辅助重力泄油物理模拟实验[J]. 油气地质与采收率, 2017, 24(1):80-85. |
[22] | WANG Chuanfei, WU Guanghuan, WEI Tao, et al. Physical simulation experiment of nitrogen and viscosity reducer combined with steam-assisted gravity drainage in thin super-heavy oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 80 -85. |
[23] | 孔凡群. 低渗透油藏CO2非混相驱气窜影响因素试验[J]. 中国石油大学学报(自然科学版), 2021, 45(3):97-103. |
[23] | KONG Fanqun. Experiment on influencing factors of CO2 immiscible drive gas channeling in low permeability reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(3): 97-103. |
[24] | 何更生, 唐海. 油层物理[J]. 石油工业出版社, 2011, 5(2):359-361. |
[24] | HE Gengsheng, TANG Hai. Reservoir physics[J]. Petroleum Industry Press, 2011, 5(2): 359-361. |
[25] | 梁伟. 稠油化学降黏冷采技术在胜利油田的研究及应用[J]. 内蒙古石油化工, 2019, 45(4):68-69. |
[25] | LIANG Wei. Research and application of heavy oil chemical viscosity reduction cold recovery technology in Shengli Oilfield[J]. Inner Mongolia Petrochemical Industry, 2019, 45(4): 68-69. |
[26] | 汤勇, 杜志敏, 孙雷, 等. CO2在地层水中溶解对驱油过程的影响[J]. 石油学报, 2011, 32(2):311-314. |
[26] | TANG Yong, DU Zhimin, SUN Lei, et al. The influence of CO2 dissolution in formation water on oil displacement process[J]. Acta Petrolei Sinica, 2011, 32(2): 311-314. |
[27] | SUTJIADI-SIA Y, JAEGER P, EGGERS R. Interfacial phenomena of aqueous systems in dense carbon dioxide[J]. The Journal of Supercritical Fluids, 2008, 46(3): 272-279. |
[28] | 马涛, 汤达祯, 蒋平, 等. 注CO2提高采收率技术现状[J]. 油田化学, 2007(4):379-383. |
[28] | MA Tao, TANG Dazhen, JIANG Ping, et al. The status quo of CO2 injection for enhanced oil recovery technology[J]. Oilfield Chemistry, 2007(4): 379-383. |
/
〈 | 〉 |