Geothermal Development and Utilization

Vertical distribution characteristics analysis of shallow stratum geothermal temperature field in the Southeastern Hancheng Fault, Guanzhong Basin

  • Yuze XUE ,
  • Yugui ZHANG ,
  • Yuanhong HAN ,
  • Tinghui ZHANG ,
  • Chao XUE ,
  • Juhui XIAO ,
  • Zhenzhou PENG ,
  • Bin GUO
Expand
  • 1. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, Shaanxi 710021, China
    2. Shaanxi Coal Geology Group Co., Ltd., Xi'an, Shaanxi 710021, China
    3. Shaanxi 131 Coal Geology Co., Ltd., Hancheng, Shaanxi 715400, China
    4. Shaanxi 139 Coal Geology Hydrogeology Co., Ltd., Weinan, Shaanxi 714000, China

Received date: 2022-03-31

  Online published: 2022-12-02

Abstract

Inorder to further study the vertical distribution characteristics of the shallow geothermal temperature field in the southeastern of Hancheng, Guanzhong Basin. The authors used temperature measuring cable, which is single line multipoint communication, to monitor stratum temperature in a depth of 50 meters for one year in Hancheng. The results shows that the vertical distribution of shallow geothermal temperature is regularity and obviously layered, it can be differentiated as variable temperature zone, constant temperature zone and increased temperature zone. The buried depth of the bottom of variable temperature zone is 15 m, it is significantly affected by climate. Compared with the temperature change of atmosphere, the variable temperature zone has a hysteresis phenomenon. The constant temperature zone depth range is between 15~35 m, and the average temperature is 15.3 ℃, 1.8 ℃ higher than the annual average atmospheric temperature in the same region. The increased temperature zone is below 35 m, and the geothermal gradient is 3.25 ℃/hm within 35~100 m, which is higher than surrounding area. It is concluded that there are three reasons: firstly, the Hancheng fault is heat conduction channel to carry deep heat to shallow formations; secondly, the groundwater runoff intensity is relatively weak to save heat; thirdly, the loose stratum of quaternary and neogene is thick, which can reduce thermal conduction.

Cite this article

Yuze XUE , Yugui ZHANG , Yuanhong HAN , Tinghui ZHANG , Chao XUE , Juhui XIAO , Zhenzhou PENG , Bin GUO . Vertical distribution characteristics analysis of shallow stratum geothermal temperature field in the Southeastern Hancheng Fault, Guanzhong Basin[J]. Petroleum Reservoir Evaluation and Development, 2022 , 12(6) : 843 -849 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.06.002

References

[1] 黄景锐. 西安市浅层地温场分布特征及其变化分析[D]. 西安: 长安大学, 2014.
[1] HUANG Jingrui. Analysis of distribution and change characteristics of shallow groundwater temperature field in Xi'an city[D]. Xi'an: Chang'an University, 2014.
[2] 周阳, 穆根胥, 张卉, 等. 关中盆地地温场划分及其地质影响因素[J]. 中国地质, 2017, 44(5): 1017-1026.
[2] ZHOU Yang, MU Genxu, ZHANG Hui, et al. Geothermal field division and its geological influencing factors in Guanzhong basin[J]. Geology in China, 2017, 44(5): 1017-1026.
[3] 王贵玲, 刘峰, 王婉丽. 我国陆区浅层地温场空间分布及规律研究(一)[J]. 供热制冷, 2015, 16(2): 52-54.
[3] WANG Guiling, LIU Feng, WANG Wanli. Study on spatial distribution and law of continent shallow geothermal field in China(Ⅰ)[J]. Heating & Refrigeration, 2015, 16(2): 52-54.
[4] 王均, 黄尚瑶, 黄歌山, 等. 中国南部地温分布的基本特征[J]. 地质学报, 1986, 64(3): 297-310.
[4] WANG Jun, HUANG Shangyao, HUANG Geshan, et al. Basic characteristics of the earth’s temperature distribution in southern China[J]. Acta Geologica Sinica, 1986, 64(3): 297-310.
[5] 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321.
[5] LIN Wenjing, LIU Zhiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321.
[6] 卫万顺, 郑桂森, 栾英波. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 2010, 37(6): 1733-1739.
[6] WEI Wanshun, ZHENG Guisen, LUAN Yingbo. Characteristics and influencing factors of the shallow geothermal field in Beijing plain area[J]. Geology in China, 2010, 37(6): 1733-1739.
[7] 任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J]. 地质学报, 2006, 80(5): 674-684.
[7] REN Zhanli, ZHANG Sheng, GAO Shengli, et al. Research on region of maturation anomaly and formation time in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 674-684.
[8] 杨树彪. 上海地区松散地层温度垂向分布特征分析[J]. 地质学刊, 2015, 39(4): 678-685.
[8] YANG Shubiao. Analysis of the vertical distribution of unconsolidated formation temperature in Shanghai[J]. Journal of Geology, 2015, 39(4); 678-685.
[9] 高世轩. 上海地源热泵系统对地质环境的热影响分析[J]. 上海国土资源, 2012, 33(1): 67-70.
[9] GAO Shixuan. Analyzing the influence of heat on the geological environment surrounding ground source heat pump system in Shanghai[J]. Shanghai Land & Resources, 2012, 33(1): 67-70.
[10] 王小清, 王万忠. 地埋管地源热泵系统运行期地温监测与分析[J]. 上海国土资源, 2013, 34(2): 76-79.
[10] WANG Xiaoqing, WANG Wanzhong. Soil-temperature monitoring and analysis of a ground source heat pump system during the operating period[J]. Shanghai Land & Resources, 2013, 34(2): 76-79.
[11] 刘丹丹, 胡安焱, 刘彩波, 等. 西安市浅层地温场垂向分布特征及其影响因素分析[J]. 地下水, 2014, 36(6): 1-3.
[11] LIU Dandan, HU Anmiao, LIU Caibo, et al. Study of characteristics and influencing factors in a vertical direction of the shallow geothermal field in Xi'an city[J]. Ground water, 2014, 36(6): 1-3
[12] 周阳, 洪增林, 张卉, 等. 关中盆地浅层地热能赋存规律及资源量估算[J]. 中国地质调查, 2020, 7(2): 21-29.
[12] ZHOU Yang, HONG Zenglin, ZHANG Hui, et al. Occurrence rules and resource estimation of shallow geothermal energy in Guanzhong Basin[J]. Geological Survey of China, 2020, 7(2): 21-29.
[13] 周阳, 张卉, 江星辰, 等. 陕西省恒温层深度主要影响因素及其估算[J]. 中国地质调查, 2019, 6(3): 81-86.
[13] ZHOU Yang, ZHANG Hui, JIANG Xingchen, et al. Influencing factors of constant-temperature layer depth and its estimation in Shaanxi Province[J]. Geological Survey of China, 2019, 6(3): 81-86.
[14] 周武. 鄂尔多斯地块东南缘与汾渭地堑接壤地带寻找深部岩溶地热水新突破[J]. 地下水, 2020, 42(4): 106-107.
[14] ZHOU Wu. A new breakthrough was made in the search for deep karst geothermal water in the southeastern edge of the Ordos block and the border zone of Fenwei Graben[J]. Ground Water, 2020, 42(4): 106-107.
[15] 王兴. 渭河盆地地温场特征与地热系统[J]. 陕西煤炭技术, 1997, 16(2): 43-50.
[15] WANG Xing. Characteristics of geothermal field and geothermal system in Weihe Basin[J]. Shaanxi Coal Technology, 1997, 16(2): 43-50.
[16] 李剑. 韩城区块水文地质条件对煤层气开发的影响[D]. 北京: 中国矿业大学(北京), 2019.
[16] LING Jian. The influence of hydrogeological condition on coalbed methane development in the Hancheng Area[D]. Beijing: China University of Mining & Technology(Beijing), 2019.
[17] 阎凤忠, 贺勇, 安卫平, 等. 韩城一侯马断陷区主要活动断裂的调查[J]. 山西地震, 1987, 15(3): 9-13.
[17] YAN Fengzhong, HE Yong, AN Weiping, et al. Investigation of major active faults in Hancheng-Houma Fault Depression Zone[J]. Earthquake Research in Shanxi, 1987, 15(3): 9-13.
[18] 代革联. 地质构造对韩城矿区水文地质特征的影响[J]. 干旱区资源与环境, 2010, 24(7): 62-67.
[18] DAI Gelian. The effect of geology structure on hydrogeology characteristics of Hancheng mining area[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 62-67.
[19] 周绍武. 恒温带取值与简易测温温度校正的统计分析法[J]. 中国煤田地质, 1989, 1(1): 30-34.
[19] ZHOU Shaowu. The statistical analysis method of constant temperature zone value and simple temperature measurement and correction[J]. Coal Geology of China, 1989, 1(1): 30-34.
[20] 李济琛, 陈明珠, 汤强, 等. 南京市浅层地温场研究——基于分布式光纤测温技术[J]. 中国地质, 2021, 48(3): 939-947.
[20] LI Jichen, CHEN Mingzhu, TANG Qiang, et al. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 2021, 48(3): 939-947.
[21] 能源行业地热能专业标准化技术委员,地热能术语: 第2部分术语和定义: NB/T 10097—2018[S]. 北京: 国家能源局, 2018.
[21] Energy industry geothermal energy standardization technical committee,Terminology of geothermal energy, the 2nd part Terminology & Definition: NB/T 10097—2018[S]. Beijing: National energy administration, 2018.
[22] 穆跟胥, 李锋, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016.
[22] MU Genxu, LI Feng, YAN Wenzhong, et al. Occurrence law and key technologies of development and utilization of geothermal resources for in Guanzhong Basin[M]. Beijing: Geology Press, 2016.
[23] 王佳武, 罗安云, 唐力, 等. 陕西渭北东部岩溶热水分布特征及开发利用[J]. 陕西地质, 2015, 33(2): 84-89.
[23] WANG Jiawu, LUO Anyun, TANG Li, et al. Exploitation and distribution of carst thermal water in the east of north Weihe River in Shaanxi Province[J]. Geology of Shaanxi, 2015, 33(2): 84-89.
[24] 李建宁, 马汉田, 王英, 等. 晋陕河津——韩城地区岩溶地下水勘查报告[R]. 北京: 国家能源局, 2004: 34.
[24] LI Jianning, MA Hantian, WANG Ying, et al. Karst groundwater investigation report in Hejin-Hancheng region of Shanxi Province and Shaanxi Province[R]. Beijing: National Energy Adminiatrati, 2004: 34.
Outlines

/