Comprehensive Research

Stress sensitive characteristics of fault-karst reservoir

  • Yixiao ZHANG ,
  • Xiaobo LI ,
  • Genhua SHANG ,
  • Hongguang LIU ,
  • Qing LI ,
  • Tao TAN
Expand
  • 1. Exploration and Production Research Institute, Sinopec Northeast Oilfield Company, Urumqi, Xinjiang 830011, China
    2. Key Laboratory of Enhanced Oil Recovery for Carbonate Fracture-Cavity Reservoirs, Sinopec, Urumqi, Xinjiang 830011, China
    3. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China

Received date: 2021-09-29

  Online published: 2023-01-30

Abstract

The connected media of fault-karst reservoir are fractures, caves and pores, the decrease of pressure will lead to the decrease of permeability and conductivity, which will have an irreversible impact on oil well production. According to the stress-sensitive characteristics of fault-karst reservoir, 72 groups of physical simulation experiments on conductivity are designed and carried out to analyze the stress-sensitive characteristics of different connected media and influencing factors. Based on the results of physical simulation experiment and the theory of porous flow, a numerical inversion model of flow in fractured solution reservoir is established, and the stress sensitivity effect caused by reservoir pressure drop on oil well production is studied. The results show that the pressure drop has great influence on the conductivity, productivity and recovery ability of different connected media. The pressure inflection points of fracture type, karst cave type and pore type are 5.3 %, 20.4 % and 35.1 %, respectively, and the conductivity loss of the first two are 99.7 % and 45.0 %. The conductivity loss of pore type decreases linearly in the test range. The research on the characteristics of pressure drop inflection point provides the basis for reasonable production control and the determination of energy replenishment time, and has important guiding significance for stable production of oil wells.

Cite this article

Yixiao ZHANG , Xiaobo LI , Genhua SHANG , Hongguang LIU , Qing LI , Tao TAN . Stress sensitive characteristics of fault-karst reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(1) : 127 -134 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.014

References

[1] 鲁新便. 塔里木盆地塔河油田奥陶系碳酸盐岩油藏开发地质研究中的若干问题[J]. 石油实验地质, 2003, 25(5): 508-512.
[1] LU Xinbian. Several problems in study of development programme of Ordovician carbonate reservoirs in Tahe oilfield,Tarim basin[J]. Petroleum Geology and Experiment, 2003, 25(5): 508-512.
[2] 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142.
[2] YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142.
[3] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
[3] JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
[4] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
[4] QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
[5] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
[5] QI Lixin. Characteristics and inspiration of ultra -deep fault-karst reservoir in the Shunbei area of the Tarim basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
[6] 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339.
[6] TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339.
[7] 程洪, 张杰, 张文彪. 断溶体储层类型识别、预测及发育模式探讨——以塔里木盆地塔河十区TH10421单元为例[J]. 石油与天然气地质, 2020, 41(5): 996-1003.
[7] CHENG Hong, ZHANG Jie, ZHANG Wenbiao. Discussion on identification,prediction and development pattern of faulted-karst carbonate reservoirs:A case study of TH10421 fracture-cavity unit in block 10 of Tahe oilfield,Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 996-1003.
[8] 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546.
[8] HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546.
[9] 刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420.
[9] LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology or ultra-deep fault-karst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4): 412-420.
[10] 胡文革. 顺北油气田断溶体油藏油井产能评价新方法[J]. 新疆石油地质, 2021, 42(2): 168-172.
[10] HU Wenge. A new method for evaluating the productivity of oil wells in fault-karst reservoirs in Shunbei Oil & Gas Field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 168-172.
[11] 程晓军. 超深断溶体油藏油井见水特征及生产制度优化——以塔里木盆地顺北油田Z井为例[J]. 新疆石油地质, 2021, 42(5): 554-558.
[11] CHENG Xiaojun. Characteristics of water breakthrough and optimization of production system of oil wells drilled in ultra-deep fault-karst reservoirs: A case study on Well-Z in Shunbei Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(5): 554-558.
[12] 康志江, 李阳, 计秉玉, 等. 碳酸盐岩缝洞型油藏提高采收率关键技术[J]. 石油与天然气地质, 2020, 41(2): 434-441.
[12] KANG Zhijiang, LI Yang, JI Bingyu, et al. Key technologies for EOR in fractured-vuggy carbonate reservoirs[J]. Oil & Gas Geology, 2020, 4(2): 434-441.
[13] 龙旭. 缝洞型碳酸盐岩油藏油井连通模式与生产动态的关系研究[D]. 北京: 中国地质大学(北京), 2012.
[13] LONG Xu. Study on the relationship between well communication mode and production dynamic in fractured-vuggy carbonate reservoirs: The case of Tahe oil field[D]. Beijing: China University of Geosciences(Beijing), 2012.
[14] 贺洪举, 张树东, 邱泉, 等. 非均质碳酸盐岩储层及产能评价方法探索[J]. 西南石油大学学报(自然科学版), 2008, 30(1): 89-92.
[14] HE Hongju, ZHANG Shudong, QIU Quan, et al. Exploration of heterogeneous carbonate reservoir and productivity evaluation method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(1): 89-92.
[15] 李传亮. 油藏工程原理[M]. 北京: 石油工业出版社, 2011.
[15] LI Chuanliang. Principle of reservoir engineering[M]. Beijing: Petroleum Industry Press, 2011.
[16] 郭粉转, 唐海, 吕栋梁, 等. 低渗透油藏合理地层压力保持水平研究[J]. 特种油气藏, 2011, 18(1): 90-92.
[16] GUO Fenzhuan, TANG Hai, LYU Dongliang, et al. Research on rational formation pressure maintenance level in low permeability reservoir[J]. Special Oil & Gas Reservoirs, 2011, 18(1):90-92.
[17] 顾浩, 康志江, 尚根华, 等. 基于物质平衡的超深断溶体油藏弹性驱产能主控因素分析[J]. 油气地质与采收率, 2021, 28(1): 86-92.
[17] GU Hao, KANG Zhijiang, SHANG Genhua, et al. Analysis of main controlling factors for elastic flooding productivity of ultra-deep fault-karst reservoirs based on material balance[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 86-92.
[18] 邱浩. 应力状态对碳酸盐岩裂缝结构的影响规律研究[D]. 青岛: 中国石油大学(华东), 2015.
[18] QIU Hao. Research on the influences of stress state on the crack structure of carbonate rocks[D]. Qingdao: China University of Petroleum (East China), 2015.
[19] 段慕白. 多场耦合作用下碳酸盐岩裂缝变形机理研究[D]. 成都: 西南石油大学, 2016.
[19] DUAN Mubai. Multi-physics coupling in carbonate rock fracture deformation mechanism[D]. Chengdu: Southwest Petroleum University, 2016.
[20] 周汉国, 郭建春, 李静, 等. 深层碳酸盐岩储层溶洞围岩应力分布研究[J]. 地质力学学报, 2018, 24(1): 35-41.
[20] ZHOU Hanguo, GUO Jianchun, LI Jing, et al. Distribution of surrounding rock stress in deep carbonate reservoir karst cave[J]. Journal of Geomechanics, 2018, 24(1):35-41.
[21] 聂仁仕, 贾永禄, 沈楠, 等. 油藏天然能量指标在注水动态分析中的应用[J]. 新疆石油地质, 2010, 31(2): 174-177.
[21] NIE Renshi, JIA Yonglu, SHEN Nan, et al. Application of reservoir natural drive index to waterflood performance analysis[J]. Xinjiang Petroleum Geology, 2010, 31(2):174-177.
[22] 党海龙, 姜汉桥, 王小锋, 等. 延长组长6低渗油藏高温高压条件下裂缝对渗吸效率的影响[J]. 石油与天然气化工, 2020, 49(2): 87-92.
[22] DANG Hailong, JIANG Hanqiao, WANG Xiaofeng, et al. Influence of crack on imbibition efficiency of low permeability reservoir in Yanchang Chang 6 formation under high temperature and high pressure condition[J]. Chemical Engineering of Oil & Gas, 2020, 49(2): 87-92.
[23] 姜军, 苟明生, 韩慧玲, 等. 中高渗砂砾岩油藏调堵一体化技术——以滴水泉油田八道湾组油藏为例[J]. 石油与天然气化工, 2021, 50(1): 95-100.
[23] JIANG Jun, GOU Mingsheng, HAN Huiling, et al. Integrated technology of regulation and plugging in medium-high permeability sand conglomerate reservoir:A case study of Badaowan formation reservoir in Dishuiquan oilfield[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 95-100.
Outlines

/