Petroleum Reservoir Evaluation and Development >
2023 , Vol. 13 >Issue 1: 23 - 30
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.01.003
Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir
Received date: 2022-09-26
Online published: 2023-01-30
At present, China has encountered many problems and challenges in the exploration and development of continental shale oil. The mobility of shale oil is greatly affected by complex pore structure and poor seepage capacity, and restricts the efficient development of continental shale oil. Therefore, In order to solve such prominent problem, the present situation, existing problems and future development trend of the research methods and technical means of shale oil reservoir pore structure and shale oil seepage law are briefly introduced. The results show that the characterization withe multi-scale, fine and continuous is the key to characterize the pore structure of continental shale oil reservoir. The establishment of the uniform pore structure characterization technology and the classification evaluation criteria is the geological basis for the effective development of continental shale oil. The combination of multi-physical model and experimental method is the basis of the seepage characterization of continental shale oil. Strengthening the combination of numerical simulation, physical simulation and laboratory experiments is the main direction of the study on the seepage mechanism of continental shale oil. It provides an important guideline for breaking the bottleneck of continental shale oil development and is of great significance to realize the efficient development of continental shale oil reservoirs.
Xiaoming WANG , Junbin CHEN , Dazhong REN . Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(1) : 23 -30 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.003
[1] | 张大伟. 创新勘探开发模式提升中国油气勘探开发力度[J]. 中国国土资源经济, 2019, 32(8): 4-7. |
[1] | ZHANG Dawei. Innovating exploration and development mode to improve oil and gas exploration and development in China[J]. Natural Resource Economics of China, 2019, 32(8): 4-7. |
[2] | 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. |
[2] | ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. |
[3] | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
[3] | WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. |
[4] | 张世铭, 王建功, 张小军, 等. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119. |
[4] | ZHANG Shiming, WANG Jiangong, ZHANG Xiaojun, et al. Studies on the reservoir characteristics and the fluid flow in Jianquanzi member of the Jiuxi Basin, northwest China[J]. Natural Gas Geoscience, 2018, 29(8): 1111-1119. |
[5] | 聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. |
[5] | NIE Haikuan, ZHANG Peixian, BIAN Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. |
[6] | 蒲秀刚, 金凤鸣, 韩文中, 等. 陆相页岩油甜点地质特征与勘探关键技术——以沧东凹陷孔店组二段为例[J]. 石油学报, 2019, 40(8): 997-1012. |
[6] | PU Xiugang, JIN Fengming, HAN Wenzhong, et al. Sweet spots geological characteristics and key exploration technologies of continental shale oil: A case study of Member 2 of Kongdian Formation in Cangdong sag[J]. Acta Petrolei Sinica, 2019, 40(8): 997-1012. |
[7] | 孙超, 姚素平. 页岩油储层孔隙发育特征及表征方法[J]. 油气地质与采收率, 2019, 26(1): 153-164. |
[7] | SUN Chao, YAO Suping. Pore structure and characterization methods of shale oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 153-164. |
[8] | 高铁宁, 杨正明, 李海波, 等. 页岩油储层纳米孔隙结构特征[J]. 中国科技论文, 2018, 13(21): 2461-2467. |
[8] | GAO Tiening, YANG Zhengming, LI Haibo, et al. Characteristics of pore structure in shale oil reservoir[J]. China Sciencepaper, 2018, 13(21): 2461-2467. |
[9] | 张顺, 刘惠民, 宋国奇, 等. 东营凹陷页岩油储集空间成因及控制因素[J]. 石油学报, 2016, 37(12): 1495-1507. |
[9] | ZHANG Shun, LIU Huimin, SONG Guoqi, et al. Genesis and control factors of shale oil reserving space in Dongying sag[J]. Acta Petrolei Sinica, 2016, 37(12): 1495-1507. |
[10] | 许琳, 常秋生, 冯玲丽, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素[J]. 中国石油勘探, 2019, 24(5): 649-660. |
[10] | XU Lin, CHANG Qiusheng, FENG Lingli, et al. The reservoir characteristics and control factors of shale oil in Permian Fengcheng Formation of Mahu sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 649-660. |
[11] | 徐二社, 陶国亮, 李志明, 等. 江汉盆地潜江凹陷盐间页岩油储层不同岩相微观储集特征——以古近系潜江组三段4亚段10韵律为例[J]. 石油实验地质, 2020, 42(2): 193-201. |
[11] | XU Ershe, TAO Guoliang, LI Zhiming, et al. Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang sag, Jianghan Basin: A case study of Paleogene Eq34-10 rhythm[J]. Petroleum Geology & Experiment, 2020, 42(2): 193-201. |
[12] | WANG H, WU W, CHEN T, et al. Pore structure and fractal analysis of shale oil reservoirs: A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 711-723. |
[13] | LIU K, OSTADHASSAN M, ZHOU J, et al. Nanoscale pore structure characterization of the Bakken shale in the USA[J]. Fuel, 2017, 209: 567-578. |
[14] | LI J J, LIU Z, LI J Q, et al. Fractal characteristics of continental shale pores and its significance to the occurrence of shale oil in china: A case study of biyang depression[J]. Fractals, 2018, 26(2): 1840008. |
[15] | 孙超, 姚素平, 李晋宁, 等. 基于小角X射线散射页岩油储层介孔特征研究[J]. 高校地质学报, 2017, 23(4): 715-724. |
[15] | SUN Chao, YAO Suping, LI Jinning, et al. Characteristics of mesoporous in shale reservoirs by small angle X-ray scattering method[J]. Geological Journal of China Universities, 2017, 23(4): 715-724. |
[16] | LETHAM E A, BUSTIN R M. Klinkenberg gas slippage measurements as a means for shale pore structure characterization[J]. Geofluids, 2016, 16(2): 264-278. |
[17] | 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64. |
[17] | LONG Yumei, CHEN Manfei, CHEN Fengling, et al. Characteristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64. |
[18] | 李乐, 刘爱武, 漆智先, 等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学, 2020, 45(2): 602-616. |
[18] | LI Le, LIU Aiwu, QI Zhixian, et al. Pore structure characteristics of shale reservoir of the lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag[J]. Earth Science, 2020, 45(2): 602-616. |
[19] | 崔荣浩. 基于孔隙网络模型的页岩储层油水两相流动模拟[D]. 青岛: 中国石油大学(华东), 2018. |
[19] | CUI Ronghao. Pore network modeling of oil/water two-phase flow in shale[D]. Qingdao: China University of Petroleum, 2018. |
[20] | 王森. 页岩油微尺度流动机理研究[D]. 青岛: 中国石油大学(华东), 2016. |
[20] | WANG Sen. Microscale flow mechanisms of oil in shale[D]. Qingdao: China University of Petroleum, 2016. |
[21] | TIVAYANONDA V. Comparison of single, double, and triple linear flow models for shale gas/oil reservoirs[D]. Texas: Texas A & M University, 2012. |
[22] | 苏玉亮, 鲁明晶, 李萌, 等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质, 2019, 40(3): 645-652. |
[22] | SU Yuliang, LU Mingjing, LI Meng, et al. Numerical simulation of shale oil coupled flow in multi-pore media[J]. Oil & Gas Geology, 2019, 40(3): 645-652. |
[23] | TIVAYANONDA V, APIWATHANASORN S, EHLIG-ECONOMIDES C, et al. Alternative interpretations of shale gas/oil rate behavior using a triple porosity model[C]// Paper SPE-159703-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2012. |
[24] | WANG W D, SU Y L, ZHANG X, et al. Analysis of the complex fracture flow in multiple fractured horizontal wells with the fractal tree-like network models[J]. Fractals, 2015, 23(2): 1550014. |
[25] | 雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3): 94-98. |
[25] | LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94-98. |
[26] | 李佳琦, 陈蓓蓓, 孔明炜, 等. 页岩油储集层数字岩心重构及微尺度下渗流特征——以吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 新疆石油地质, 2019, 40(3): 319-327. |
[26] | LI Jiaqi, CHEN Beibei, KONG Mingwei, et al. Digital core reconstruction and research on microscale flow characteristics of shale oil reservoir: a case of the shale oil in Permian Lucaogou Formation, Jimsar sag[J]. Xinjiang Petroleum Geology, 2019, 40(3): 319-327. |
[27] | YU W, WU K, SEPEHRNOORI K. A semianalytical model for production simulation from nonplanar hydraulic-fracture geometry in tight oil reservoirs[J]. SPE Journal, 2016, 21(3): 1028-1040. |
[28] | DONG Y, LI P C, TIAN W, et al. An equivalent method to assess the production performance of horizontal wells with complicated hydraulic fracture network in shale oil reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019: 102975. |
[29] | 高英, 朱维耀, 岳明, 等. 体积压裂页岩油储层渗流规律及产能模型[J]. 东北石油大学学报, 2015, 39(1): 80-86. |
[29] | GAO Ying, ZHU Weiyao, YUE Ming, et al. Sapage law and productivity model of stimulated reservoir volume in shale oil reservoirs[J]. Journal of Northeast Petroleum University, 2015, 39(1): 80-86. |
[30] | LE T D, MURAD M A. A new multiscale model for flow and transport in unconventional shale oil reservoirs[J]. Applied Mathematical Modelling, 2018, 64: 453-479. |
[31] | 刘礼军, 姚军, 孙海, 等. 考虑启动压力梯度和应力敏感的页岩油井产能分析[J]. 石油钻探技术, 2017, 45(5): 84-91. |
[31] | LIU Lijun, YAO Jun, SUN Hai, et al. The effect of threshold pressure gradient and stress sensitivity on shale oil reservoir productivity[J]. Petroleum Drilling Techniques, 2017, 45(5): 84-91. |
[32] | 雷浩, 何建华, 胡振国. 考虑应力敏感和边界层效应的页岩油油藏渗流模型研究[J]. 科学技术与工程, 2019, 19 (11): 90-95. |
[32] | LEI Hao, HE Jianhua, HU Zhenguo. A mathematical model of shale oil reservoir considering the effects of stress sensitivity and boundary layer[J]. Science Technology and Engineering, 2019, 19(11): 90-95. |
/
〈 | 〉 |