Petroleum Reservoir Evaluation and Development >
2023 , Vol. 13 >Issue 1: 52 - 63
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.01.006
Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example
Received date: 2021-10-12
Online published: 2023-01-30
Gas bearing shale is widely developed in continental faulted basins in China. In the past, it was mainly studied as the gas source rock, and there was little research on its reservoir and influencing factors. It is urgent to carry out corresponding researches to clarify the main controlling factors of shale reservoir development in continental faulted basins. For the researches, the shale of Shahezi Formation in Xujiaweizi fault depression of Songliao Basin and Longmaxi Formation in Sichuan Basin are selected, and the difference of reservoir characteristics between high over mature continental fault depression basin and marine gas shale is compared and studied by the experiments such as organic geochemistry, whole rock analysis, scanning electron microscope, low-temperature nitrogen adsorption and nuclear magnetic resonance. The research shows that the shale formation environment of Shahezi Formation is diverse, the organic matter type is mainly type Ⅲ, the clay mineral content is high, the cemented quartz is developed, the clay related pores and quartz intergranular pores are the main pore types, the specific surface area is small but the pore diameter is large, and the reservoir development is controlled by compaction, clay mineral transformation and coal seam development; Longmaxi Formation shale was formed in shelf environment. The type of organic matter is mainly type Ⅰ, with high abundance of organic matter and high content of biogenic quartz. Organic pores and clay related pores are the main pore types, and the type and maturity of organic matter mainly control the development of pores. On the whole, the shale reservoir development conditions of Shahezi Formation are slightly worse than those of Longmaxi Formation, but the plain swamp microfacies shale is developed close to the coal seam, the authigenic cemented quartz is developed, the proportion of Yimeng mixed layer is high, the reservoir has high organic matter abundance, good compressibility, large pore volume and specific surface area and good porosity development, which can be used as a potential favorable target for further evaluation and research.
Renwen ZHAO , Dianshi XIAO , Shuangfang LU , Nengwu ZHOU . Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage: Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(1) : 52 -63 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.01.006
[1] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. |
[1] | ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Characteristics, challenges and prospects of shale gas in China(I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. |
[2] | 李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业, 2009, 29(5): 11-16. |
[2] | LI Jianzhong, DONG Dazhong, CHEN Gengsheng, et al. Prospects and strategic position of shale gas resources in China[J]. Natural Gas Industry, 2009, 29(5): 11-16. |
[3] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12): 1-14. |
[3] | HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment and high yield of atmospheric shale gas in the transition zone of Southeastern Chongqing basin margin[J]. Natural gas industry, 2018, 38(12): 1-14. |
[4] | 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. |
[4] | ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Shale gas exploration fields and development directions in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. |
[5] | HE Taohua, LU Shuangfang, LI Wenhao, et al. Effect of salinity on source rock formation and its control on the oil content in shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China[J]. Energy & Fuels, 2018, 32(6): 698-707. |
[6] | 孙莎莎, 董大忠, 李育聪, 等. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. |
[6] | SUN Shasha, DONG Dazhong, LI Yucong, et al. Oil and gas geological characteristics and reservoir forming control factors of continental shale in Da'anzhai member of Jurassic Ziliujing formation in Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(1): 124-135. |
[7] | 郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(5): 535-540. |
[7] | GUO Shaobin, FU Juanjuan, GAO Dan, et al. Current status and outlook of shale gas research in the intersection of sea and land in China[J]. Petroleum Experimental Geology, 2015, 37(5): 535-540. |
[8] | 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. |
[8] | GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine continental transitional facies shale gas in Sichuan Basin[J]. Natural gas industry, 2018, 38(10): 11-18. |
[9] | 罗鹏, 吉利明. 陆相页岩气储层特征与潜力评价[J]. 天然气地球科学, 2013, 24(5): 1060-1068. |
[9] | LUO Peng, JI Liming. Characteristics and potential evaluation of continental shale gas reservoir[J]. Natural Gas Geoscience, 2013, 24(5): 1060-1068. |
[10] | 宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512. |
[10] | SONG Yan, GAO Fenglin, TANG Xianglu, et al. Factors influencing the difference in pore structure between marine and continental shale reservoirs[J]. Journal of Petroleum, 2020, 41(12): 1501-1512. |
[11] | 吕鹏佶, 柳成志, 颜康, 等. 松辽盆地徐家围子断陷沙河子组地震相研究[J]. 地质与资源, 2014, 23(4): 330-334. |
[11] | LYU Pengji, LIU Chengzhi, YAN Kang, et al. Study on seismic facies of Shahezi Formation in Xujiaweizi fault depression of Songliao Basin[J]. Geology and Resources, 2014, 23(4): 330-334. |
[12] | 陈海峰, 王凤启, 王民. 徐家围子断陷沙河子组致密砂砾岩气藏特征与资源潜力[J]. 中南大学学报(自然科学版), 2018, 49(1): 141-149. |
[12] | CHEN Haifeng, WANG Fengqi, WANG Min. Characteristics and resource potential of tight Sandy Conglomerate gas reservoir in Shahezi Formation of Xujiaweizi fault depression[J]. Journal of Central South University(Science and Technology), 2018, 49(1): 141-149. |
[13] | 张春明, 张维生, 郭英海. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 2012, 19(1): 136-145. |
[13] | ZHANG Chunming, ZHANG Weisheng, GUO Yinghai. Sedimentary environment of Longmaxi formation and its influence on source rocks in Southeast Sichuan Northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. |
[14] | 张海涛, 张颖, 何希鹏, 等. 渝东南武隆地区构造作用对页岩气形成与保存的影响[J]. 中国石油勘探, 2018, 23(5): 47-56. |
[14] | ZHANG Haitao, ZHANG Ying, HE Xipeng, et al. Influence of tectonism on shale gas formation and preservation in Wulong area,Southeast Chongqing[J]. China Petroleum Exploration, 2018, 23(5): 47-56. |
[15] | 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. |
[15] | GUO Tonglou, JIANG Shu, ZHANG Peixian, et al. Exploration and development progress and research direction of atmospheric pressure shale gas around Sichuan Basin[J]. Petroleum Experimental Geology, 2020, 42(5): 837-845. |
[16] | 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. |
[16] | HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Preservation conditions and main controlling factors of marine shale gas in the southeast margin of Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. |
[17] | 秦建中, 申宝剑, 陶国亮, 等. 优质烃源岩成烃生物与生烃能力动态评价[J]. 石油实验地质, 2014, 36(4): 465-472. |
[17] | QIN Jianzhong, SHEN Baojian, TAO Guoliang, et al. Dynamic evaluation of hydrocarbon generating organisms and hydrocarbon generating capacity of high-quality source rocks[J]. Petroleum Geology and Experiment, 2014, 36(4): 465-472. |
[18] | CHEN S B, ZHU Y M, WANG H Y, et al. Shale gas reservoir characterisation; A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36(11): 6609-6616. |
[19] | 刘树根, 马文辛, JANSA Luba, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8): 2239-2252. |
[19] | LIU Shugen, MA Wenxin, JANSA Luba, et al. Shale reservoir characteristics of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252. |
[20] | 王民, 孙业峰, 王文广, 等. 松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力[J]. 天然气地球科学, 2014, 25(7): 1011-1018. |
[20] | WANG Min, SUN Yefeng, WANG Wenguang, et al. Gas characteristics and natural gas resource potential of deep hydrocarbon source rocks in the Xujiaweizi fault trap in northern Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(7): 1011-1018. |
[21] | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mis-sissippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin, 2007, 91(4): 475-499. |
[22] | 祝海华, 钟大康, 姚泾利. 等. 碱性环境成岩作用及对储集层孔隙的影响——以鄂尔多斯盆地长7段致密砂岩为例[J]. 石油勘探与开发, 2015, 42(1): 51-59. |
[22] | ZHU Haihua, ZHONG Dakang, YAO Jingli, et al. Diagenesis in alkaline environment and its influence on reservoir porosity--Taking the tight sandstone of Chang 7 member in Ordos Basin as an example[J]. Petroleum Exploration and Development, 2015, 42(1): 51-59. |
[23] | 聂海宽, 金之钧, 马鑫, 等. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报, 2017, 38(2): 160-174. |
[23] | NIE Haikuan, JIN Zhijun, MA Xin, et al. Graptolite belt and sedimentary characteristics at the bottom of Wufeng Formation of Upper Ordovician and Longmaxi formation of Lower Silurian in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2): 160-174. |
[24] | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. |
[24] | ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Study on the genesis of quartz in gas bearing shale of Wufeng Formation Longmaxi formation in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. |
[25] | 张大智, 初丽兰, 周翔, 等. 松辽盆地北部徐家围子断陷沙河子组致密气储层成岩作用与成岩相特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 22-34. |
[25] | ZHANG Dazhi, CHU Lilan, ZHOU Xiang, et al. Diagenesis and diagenetic facies characteristics of tight gas reservoir in Shahezi Formation of Xujiaweizi fault depression in northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 22-34. |
[26] | 久博, 黄文辉, 王雅婷, 等. 鄂尔多斯盆地南部煤系致密砂岩胶结作用对储层物性的影响[J]. 煤炭学报, 2018, 43(9): 2543-2552. |
[26] | JIU Bo, HUANG Wenhui, WANG Yating, et al. Effect of cementation of tight sandstone in coal measures in southern Ordos Basin on reservoir physical properties[J]. Journal of China Coal Society, 2018, 43(9): 2543-2552. |
[27] | 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486. |
[27] | WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenesis of siliceous shale rich in organic matter in Sichuan Basin and its significance to shale gas development[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. |
[28] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin, 2012, 96(6): 1071-1098. |
[29] | YANG R, HE S, YI J Z, et al. Nano-scale pore structure and fractal dimension of organ-ic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin; Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45. |
[30] | 李志清, 孙洋, 胡瑞林, 等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26(3): 758-766. |
[30] | LI Zhiqing, SUN Yang, HU Ruilin, et al. Study on nano pore structure characteristics of Shale Based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2018, 26(3): 758-766. |
[31] | EVERETT D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure and Applied Chemistry, 1972, 31(4): 577-638. |
[32] | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134. |
[32] | JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. Full aperture characterization of pore structure of shale of Longmaxi formation in Southeast Sichuan and its control on gas bearing property[J]. Earth Science Frontiers, 2016, 23(2): 126-134. |
[33] | MILAD S, MANIKA P. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: A case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206. |
[34] | CHEN F W, ZHENG Q, DING X, et al. Pore size distributions contributed by OM, clay and other minerals in over-mature marine shale: A case study of the Longmaxi shale from Southeast Chongqing, China[J]. Marine and Petroleum Geology, 2020, 122: 104679. |
[35] | 曹涛涛, 宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4): 7-13. |
[35] | CAO Taotao, SONG Zhiguang. Influence of shale organic matter characteristics on organic pore development and reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 7-13. |
[36] | 仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. |
[36] | YANG Yunfeng, BAO Fang, BORJIGIN Tenger, et al. Characteristics of organic pores in shale of Lower Silurian Longmaxi formation with different maturity in Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(3): 387-397. |
[37] | 罗小平, 吴飘, 赵建红, 等. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 50-59. |
[37] | LUO Xiaoping, WU Piao, ZHAO Jianhong, et al. Progress in the study of organic matter pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2015, 42(1): 50-59. |
[38] | 谢昭涵, 罗静爽, 刘中亮, 等. 松辽盆地徐家围子断陷的断裂复活演化特征及控藏作用[J]. 地质论评, 2015, 61(6): 1332-1346. |
[38] | XIE Zhaohan, LUO Jingshuang, LIU Zhongliang, et al. Fault reactivation evolution characteristics and reservoir control of Xujiaweizi fault depression in Songliao Basin[J]. Geological Review, 2015, 61(6): 1332-1346. |
[39] | 侯中帅, 陈世悦. 东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J]. 油气地质与采收率, 2019, 16(1): 119-128. |
[39] | HOU Zhongshuai, CHEN Shiyue. Diagenetic evolution of shale from upper member of Es4 to lower member of Es3 in Dongying depression and its impact on reservoir development[J]. Petroleum Geology and Recovery Efficiency, 2019, 16(1): 119-128. |
/
〈 | 〉 |