CBM

Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method

  • Xiangwei KONG ,
  • Xin XIE ,
  • Cunwu WANG ,
  • Xian SHI
Expand
  • 1. School of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
    2. Key Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei Province(Yangtze University), Wuhan, Hubei 430100, China
    3. CNOOC Research Institute Co., Ltd., Beijing 100028, China
    4. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2023-04-10

  Online published: 2023-09-01

Abstract

Coal-bed methane reservoirs are characterized by low porosity, low permeability and low pressure, making their industrial exploitation primarily reliant on techniques like hydraulic fracturing. Currently, more than 50 percent of the gas wells in the Shizhuang block in the Qinshui Basin currently produce less than 500 m3/d of coal bed methane. However, the increase in production after gas well retrofitting has not been ideal and the main factors affecting gas well productivity remain unclear, directly impacting the overall improvement. To address this, the degree of influence of geological and engineering factors on fracturing productivity in coal-bed gas wells is described using the gray correlation method, and the main factors controlling gas well productivity after fracturing are analyzed. A correlation mathematical model between the main control factors and gas well production is established using the Pearson correlation analysis method to predict gas well productivity. The reliability of the prediction model is verified through gas well data validation. Furthermore, a classification decision tree is established using the chi-square automatic interactive detection decision tree method, in conjunction with gas well productivity data, to understand the impact of geological and engineering factors on gas well productivity in fractured wells. Under high gas content conditions, engineering factors have a relatively small impact on the productivity improvement of gas wells. However, as the gas content decreases, the impact of different engineering factors on the gas well productivity gradually increases, which helps optimize the main design parameters such as displacement, sand volume, and total liquid volume, enriching the evaluation methods for post fracturing productivity of coal seam pressure.

Cite this article

Xiangwei KONG , Xin XIE , Cunwu WANG , Xian SHI . Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(4) : 433 -440 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.004

References

[1] 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917.
[1] LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917.
[2] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371-387.
[2] QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1): 371-387.
[3] 李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 2020, 45(4): 1406-1418.
[3] LI Yong, WANG Yanbin, MENG Shangzhi, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 2020, 45(4): 1406-1418.
[4] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442.
[4] ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 433-442.
[5] 杨长鑫, 杨兆中, 李小刚, 等. 中国煤层气地面井开采储层改造技术现状与展望[J]. 天然气工业, 2022, 42(6): 154-162.
[5] YANG Changxin, YANG Zhaozhong, LI Xiaogang, et al. Status and prospect of reservoir stimulation technologies for CBM surface well production in China[J]. Natural Gas Industry, 2022, 42(6): 154-162.
[6] 叶建平, 杨兆中, 夏日桂, 等. 深煤层水力波及压裂技术及其在沁南地区的应用[J]. 天然气工业, 2017, 37(10): 35-45.
[6] YE Jianping, YANG Zhaozhong, XIA Rigui, et al. Synchronous hydraulic conformance fracturing technology used for deep coal beds and its field application in the Southern Qinshui Basin[J]. Natural Gas Industry, 2017, 37(10): 35-45.
[7] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6.
[7] LUO Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China[J]. Natural Gas Industry, 2013, 33(6): 1-6.
[8] 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5): 27-32.
[8] LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32.
[9] 秦雪霏. 分布于厚煤系之间的薄砂岩储层间接预测方法[J]. 石油地质与工程, 2022, 36(5): 28-34.
[9] QIN Xuefei. Indirect prediction method of thin sandstone reservoir distributed between thick coal measure strata[J]. Petroleum Geology & Engineering, 2022, 36(5): 28-34.
[10] 李勇, 胡海涛, 王延斌, 等. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55-70.
[10] LI Yong, HU Haitao, WANG Yanbin, et al. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70.
[11] 门相勇, 韩征, 宫厚健, 等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业, 2018, 38(9): 10-16.
[11] MEN Xiangyong, HAN Zheng, GONG Houjian, et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry, 2018, 38(9): 10-16.
[12] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[12] XU Fei. Spontaneous imbibition characteristics of fracturing fluid in shale gas reservoir considering chemical osmotic pressure[J]. Lithologic Reservoirs, 2021, 33(3): 145-152.
[13] 闫霞, 温声明, 聂志宏, 等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田, 2020, 27(3): 375-380.
[13] YAN Xia, WEN Shengming, NIE Zhihong, et al. Recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375-380.
[14] 高玉巧, 郭涛, 何希鹏, 等. 贵州省织金地区煤层气多层合采层位优选[J]. 石油实验地质, 2021, 43(2): 227-232.
[14] GAO Yuqiao, GUO Tao, HE Xipeng, et al. Optimization of multi-layer commingled coalbed methane production in Zhijin area, Guizhou province[J]. Petroleum Geology & Experiment, 2021, 43(2): 227-232.
[15] 李勇, 王延斌, 倪小明, 等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术, 2020, 48(2): 185-193.
[15] LI Yong, WANG Yanbin, NI Xiaoming, et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology, 2020, 48(2): 185-193.
[16] 耿燕飞, 韩校锋, 周慧敏. 沁水盆地晋中地区上古生界致密砂岩气勘探潜力[J]. 石油地质与工程, 2022, 36(4): 41-47.
[16] GENG Yanfei, HAN Xiaofeng, ZHOU Huimin, et al. Exploration potential of tight sandstone gas in upper Paleozoic in Jinzhong area of Qinshui basin[J]. Petroleum Geology & Engineering, 2022, 36(4): 41-47.
[17] 罗陶涛. 沁水盆地煤岩储层特征及压裂增产措施研究[D]. 成都: 成都理工大学, 2010.
[17] LUO Taotao. Research on the characteristics of coal rock reservoirs and fracturing stimulation measures in the Qinshui Basin[D] Chengdu: Chengdu University of Technology, 2010.
[18] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[18] ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1): 86-94.
[19] 赵武鹏, 刘春春, 申兴伟, 等. 郑庄区块煤层气低产井增产技术研究[J]. 石油钻采工艺, 2017, 39(4): 491-494.
[19] ZHAO Wupeng, LIU Chunchun, SHEN Xingwei, et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang Block[J]. Oil Drilling & Production Technology, 2017, 39(4): 491-494.
[20] 张万春, 郭布民, 孔鹏, 等. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价[J]. 非常规油气, 2022, 9(1): 119-128.
[20] ZHANG Wanchun, GUO Bumin, KONG Peng, et al. Fracture morphology inversion and effect evaluation of CBM refracturing in southern Shizhuang Block[J]. Unconventional Oil & Gas, 2022, 9(1): 119-128.
[21] 梁智飞, 刘长松, 甄怀宾, 等. 韩城区块煤层气井二次改造工艺优化及现场试验[J]. 石油钻探技术, 2022, 50(3): 92-98.
[21] LIANG Zhifei, LIU Changsong, ZHEN Huaibin, et al. Optimization and field application of secondary stimulation technologies for coalbed methane wells in Hancheng Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 92-98.
[22] 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识——以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1): 147-155.
[22] ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: a case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155.
[23] 冯兴武. 渭北油田浅层致密砂岩储层多缝驱油压裂技术应用[J]. 石油地质与工程, 2022, 36(3): 99-103.
[23] FENG Xingwu. Application of multi-fracture oil displacement fracturing technology in shallow tight sandstone reservoir in Weibei oilfield[J]. Petroleum Geology & Engineering, 2022, 36(3): 99-103.
[24] 王涛. 樊庄区块煤层气直井低产的关键影响因素及二次压裂改造[D]. 徐州: 中国矿业大学, 2020.
[24] WANG Tao. Key factors of low production of coalbed methane vertical well in Fanzhuang Block and its secondary fracturing reconstruction[D]. Xuzhou: China University of Mining and Technology, 2020.
[25] 倪小明, 朱明阳, 苏现波, 等. 煤层气垂直井重复水力压裂综合评价方法研究[J]. 河南理工大学学报(自然科学版), 2012, 31(1): 39-43.
[25] NI Xiaoming, ZHU Mingyang, SU Xianbo, et al. Study on methods of repeated hydraulic fracturing comprehensive evaluation about CBM vertical Wells[J]. Journal of Henan Polytechnic University(Natural Science), 2012, 31(1): 39-43.
[26] 杨兆中, 杨晨曦, 李小刚, 等. 基于灰色关联的逼近理想解的排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例[J]. 科学技术与工程, 2020, 20(12): 4680-4686.
[26] YANG Zhaozhong, YANG Chenxi, LI Xiaogang, et al. Multiple fracturing well selection of coalbed methane wells based on technique for order preference by similarity to ideal solution method of gray correlation: taking the case of Qinshui Basin Shizhuang South Block as an examples[J]. Science Technology and Engineering, 2020, 20(12): 4680-4686.
[27] 杨兆中, 熊俊雅, 刘俊, 等. 基于Apriori关联分析的煤层气压裂效果主控因素识别[J]. 油气藏评价与开发, 2020, 10(4): 63-69.
[27] YANG Zhaozhong, XIONG Junya, LIU Jun, et al. Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis[J]. Reservoir Evaluation and Development, 2020, 10(4): 63-69.
[28] 马新仿, 李忠城, 孔鹏, 等. 基于聚类分析的煤层气二次压裂选井选层方法研究[J]. 中国矿业, 2022, 31(1): 79-87.
[28] MA Xinfang, LI Zhongcheng, KONG Peng, et al. Study on secondary fracturing candidate selection of coalbed methane based on clustering analysis[J]. China Mining Magazine, 2022, 31(1): 79-87.
[29] 姜杉钰, 康永尚, 张守仁, 等. 沁水盆地柿庄区块煤层气井排采动态影响因素分析及开发对策研究[J]. 天然气地球科学, 2016, 27(60): 1134-1142.
[29] JIANG Shanyu, KANG Yongshang, ZHANG Shouren, et al. Analysis on influencing factors of drainage dynamic of wells and CBM development strategy in Shizhuang block[J]. Natural Gas Geoscience, 2016, 27(60): 1134-1142.
[30] 郭广山, 柳迎红, 张苗, 等. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[30] GUO Guangshan, LIU Yinghong, ZHANG Miao, et al. The characteristics of drainage water and its controlling effects on the favorable area of CBM in Shizhuangnan block, Qinshui Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1115-1125.
[31] 汪剑, 崔永谦, 史今雄, 等. 沁水盆地南部煤储层裂缝测井响应与参数重构[J]. 天然气地球科学, 2016, 27(11): 2086-2092.
[31] WANG Jian, CUI Yongqian, SHI Jinxiong, et al. Logging response and parameters reconstruction of coal reservoir fractures in the southern Qinshui Basin[J]. Natural Gas Geoscience, 2016, 27(11): 2086-2092.
[32] 邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990.
[32] DENG Julong. Grey system theory tutorial[M]. Wuhan: Huazhong University of Technology Press, 1990.
[33] 宋子齐, 谭成仟. 灰色理论油气储层评价[M]. 北京: 石油工业出版社, 1995.
[33] SONG Ziqi, TAN Chengqian. Grey theory evaluation of oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 1995.
[34] 罗红旗, 黄其鸿. 基于关联度分析的农业机械化对农业产出的影响研究[J]. 北京工商大学学报(自然科学版), 2007, 25(6): 16-18.
[34] LUO Hongqi, HUANG Qihong. Research on effect of agricultural mechanization input about agricultural products based on relation index analysis[J]. Journal of Beijing Technology and Business University(Natural Science Edition), 2007, 25(6): 16-18.
[35] 胡咤咤, 黄文辉, 许启鲁, 等. 柿庄北区块3号煤含气量影响因素关联性分析[J]. 科技通报, 2016, 32(7): 36-42.
[35] HU Zhazha, HUANG Wenhui, XU Qilu, et al. The correlation analysis on influence factors of coalbed methane content in No. 3 coalbed of Northern Shizhuang block[J]. Bulletin of Science and Technology, 2016, 32(7): 36-42.
[36] 蒋永平, 杨松. 鄂尔多斯盆地东缘延川南区块煤层气井排水采气新工艺[J]. 油气藏评价与开发, 2021, 11(3): 384-389.
[36] JIANG Yongping, YANG Song. New technology of dewatering gas recovery for CBM wells in southern Yanchuan Block, eastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 384-389.
[37] 孔祥伟, 孙腾飞. 信息背景下的控压钻井课程“创新发散实用教学”方法探讨[J]. 高教学刊, 2022, 25: 35-39.
[37] KONG Xiangwei, SUN Tengfei. Exploring the method of "innovative and divergent practical teaching" in the course of controlled pressure drilling under the background of information[J]. Journal of Higher Education, 2022, 25: 35-39.
[38] 陶莹, 杨锋, 刘洋, 等. K均值聚类算法的研究与优化[J]. 计算机技术与发展, 2018, 28(6): 90-92.
[38] TAO Ying, YANG Feng, LIU Yang, et al. Research and optimization of K-means clustering algorithm[J]. Computer Technology and Development, 2018, 28(6): 90-92.
[39] 林璐, 陈健, 曲大义, 等. 基于K均值聚类算法的交通状态判别方法研究[J]. 青岛理工大学学报, 2019, 40(4): 109-114.
[39] LIN Lu, CHEN Jian, QU Dayi, et al. Study on traffic state identification method based on K-means clustering algorithm[J]. Journal of Qingdao University of Technology, 2019, 40(4): 109-114.
[40] 黄发明, 石雨, 欧阳慰平, 等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报, 2022, 44(5): 16-28.
[40] HUANG Faming, SHI Yu, OUYANG Weiping, et al. Landslide susceptibility prediction modeling based on weight of evidence and chi-square automatic interactive detection decision tree[J]. Journal of Civil and Environmental Engineering, 2022, 44(5): 16-28.
Outlines

/