Petroleum Reservoir Evaluation and Development >
2023 , Vol. 13 >Issue 4: 459 - 466
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.04.007
Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence
Received date: 2022-03-07
Online published: 2023-09-01
Considering complex shape and non-uniform distribution of fracturing fractures in shale reservoir, on the basis of multiple migration mechanisms a unified apparent permeability model is developed, incorporating two types of pore apparent permeability based on multiple migration mechanisms. This model serves as the foundation for establishing a gas reservoir-fracture-wellbore coupled seepage model, utilizing real space source function theory and pressure drawdown superposition principle. Through simulations and analyses, the study investigates the effects of micro seepage, fracture shape and non-uniform distribution of fractures on shale gas productivity. The demonstrate that micro seepage significantly impacts shale gas well production, with daily gas production being 20.3 % higher when considering micro seepage during the initial stage compared to neglecting it. Furthermore, the productivity of wells with complex fractures is lower than that of wells with ideal rectangular fractures, and star-shaped fractures exhibit the lowest productivity. The non-uniform distribution of fractures also affects the productivity of horizontal wells, and an optimal fracture layout is identified. The model takes into account both the micro seepage mechanism and actual fracturing fracture of shale gas, providing valuable guidance for the productivity research of fractured horizontal wells in shale gas reservoir.
Zhijian HU , Shuxin LI , Jianjun WANG , Hong ZHOU , Yulong ZHAO , Liehui ZHANG . Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(4) : 459 -466 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.007
[1] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
[1] | ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. |
[2] | 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. |
[2] | ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. |
[3] | 车世琦. 涪陵气田平桥区块页岩气选区评价[J]. 石油地质与工程, 2022, 36(4): 48-54. |
[3] | CHE Shiqi. Selection evaluation of shale gas in Pingqiao block of Fuling gas field[J]. Petroleum Geology & Engineering, 2022, 36(4): 48-54. |
[4] | 高志飞, 许寻, 王坤, 等. 低渗、特低渗轻质油藏溶解气驱气体流动临界饱和度研究[J]. 石油地质与工程, 2021, 35(3): 63-66. |
[4] | GAO Zhifei, XU Xun, WANG Kun, et al. Study on gas critical gas saturation of dissolved gas flooding in light oil reservoir with low permeability and ultra-low permeability[J]. Petroleum Geology & Engineering, 2021, 35(3): 63-66. |
[5] | CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82(2): 375-384. |
[6] | CIVAN F, RAI C S, SONDERGELD C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms[J]. Transport in Porous Media, 2011, 86(3): 925-944. |
[7] | WU K L, LI X F, GUO C H, et al. Adsorbed gas surface diffusion and bulk gas transport in nanopores of shale reservoirs with real gas effect-adsorption-mechanical coupling[C]// Paper SPE-173201-MS presented at the SPE Reservoir Simulation Symposium, Houston, Texas, USA, February 2015. |
[8] | 吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848. |
[8] | WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848. |
[9] | 岳陈军, 张烈辉, 赵玉龙, 等. 考虑表面扩散的页岩气渗透率两区复合解析模型[J]. 水动力学研究与进展(A辑), 2016, 31(3): 362-371. |
[9] | YUE Chenjun, ZHANG Liehui, ZHAO Yulong, et al. A dual-zone composite analytic model for shale gas permeability considering surface diffusion[J]. Chinese Journal of Hydrodynamics, 2016, 31(3): 362-371. |
[10] | 顾岱鸿, 丁道权, 刘军, 等. 三重介质页岩气藏分段压裂水平井产能预测模型[J]. 大庆石油地质与开发, 2016, 35(1): 158-165. |
[10] | GU Daihong, DING Daoquan, LIU Jun, et al. Productivity predicting model of the staged fractured horizontal well in triple-media shale gas reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(1): 158-165. |
[11] | OZKAN E, BROWN M, RAGHAVAN R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(2): 248-259. |
[12] | 杨兆中, 廖梓佳, 李小刚, 等. 非均布导流下页岩气藏压裂水平井产量模拟[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 93-100. |
[12] | YANG Zhaozhong, LIAO Zijia, LI Xiaogang, et al. Production simulation of fractured horizontal well with non-uniform space distribution of fracture conductivity in shale gas reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 93-100. |
[13] | 蒲谢洋, 胡永全, 赵金洲, 等. 考虑微观渗流的页岩气藏拉链式压裂水平井产能预测[J]. 新疆石油地质, 2016, 37(5): 565-570. |
[13] | PU Xieyang, HU Yongquan, ZHAO Jinzhou, et al. Productivity prediction of zipper-like fracturing horizontal wells in shale gas reservoirs with considering microscopic flow[J]. Xinjiang Petroleum Geology, 2016, 37(5): 565-570. |
[14] | 何易东, 任岚, 赵金洲, 等. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 2017, 24(4): 550-556. |
[14] | HE Yidong, REN Lan, ZHAO Jinzhou, et al. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-block Oil & Gas Field, 2017, 24(4): 550-556. |
[15] | ZHAO J Z, LI Z Q, HU Y Q, et al. The impacts of microcosmic flow in nanoscale shale matrix pores on the gas production of a hydraulically fractured shale-gas well[J]. Journal of Natural Gas Science & Engineering, 2016, 29(1): 431-439. |
[16] | 胡小虎. 页岩气非均匀压裂水平井非稳态产能评价方法[J]. 断块油气田, 2021, 28(4): 519-524. |
[16] | HU Xiaohu. Transient productivity evaluation method for shale gas uneven-fractured horizontal well[J]. Fault-block Oil & Gas Field, 2021, 28(4): 519-524. |
[17] | 刘嘉, 陈俊, 芮福鑫, 等. 离散裂隙网络对页岩气井产能影响的数值模拟[J]. 煤田地质与勘探, 2017, 45(6): 66-71. |
[17] | LIU Jia, CHEN Jun, RUI Funxin, et al. Numerical simulation for effect of discrete fracture network on shale gas productivity of horizontal well[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 66-71. |
[18] | 向雪冰, 司马立强, 王亮, 等. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146. |
[18] | XIANG Xuebing, SIMA Liqiang, WANG Liang, et al. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4): 137-146. |
[19] | 王志伟, 卢双舫, 王民, 等. 湖相、海相泥页岩孔隙分形特征对比[J]. 岩性油气藏, 2016, 28(1): 88-93. |
[19] | WANG Zhiwei, LU Shuangfang, WANG Min, et al. Fractal characteristics of lacustrine shale and marine shale[J]. Lithologic Reservoirs, 2016, 28(1): 88-93. |
[20] | BESKOK A, KAMIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77. |
[21] | BEHRANG A, KANTZAS A. A hybrid methodology to predict gas permeability in nanoscale organic materials; a combination of fractal theory, kinetic theory of gases and Boltzmann transport equation[J]. Fuel, 2017, 188: 239-245. |
[22] | 李亚雄, 刘先贵, 胡志明, 等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 230-240. |
[22] | LI Yaxiong, LIU Xiangui, HU Zhiming, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physica Sinica, 2017, 66(11): 230-240. |
[23] | 贾爱林, 位云生, 刘成, 等. 页岩气压裂水平井控压生产动态预测模型及其应用[J]. 天然气工业, 2019, 39(6): 71-80. |
[23] | JIA Ailin, WEI Yunsheng, LIU Cheng, et al. A dynamic prediction model of pressure control production performance of shale gas fractured horizontal wells and its application[J]. Natural Gas Industry, 2019, 39(6): 71-80. |
[24] | 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999. |
[24] | KONG Xiangyan. Advanced mechanics of fluids in porous media[M]. Hefei: University of Science and Technology of China Press, 1999. |
[25] | 赵玉龙, 梁洪彬, 井翠, 等. 页岩气井EUR快速评价新方法[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 124-131. |
[25] | ZHAO Yulong, LIANG Hongbin, JING Cui, et al. A new method for quick EUR evaluation of shale gas wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 124-131. |
/
〈 | 〉 |