Petroleum Reservoir Evaluation and Development >
2023 , Vol. 13 >Issue 5: 600 - 607
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.05.007
Application of machine deep learning technology in tight sandstones reservoir prediction: A case study of Xujiahe Formation in Xinchang, western Sichuan Depression
Received date: 2023-05-24
Online published: 2023-11-01
The second member of Xujiahe Formation in Xinchang western Sichuan Depression, a tight sandstone reservoir, exhibits strong heterogeneity and thin reservoir characteristics. Previous interpretations of lithology and reservoir properties obtained directly through seismic attributes and inversion techniques were limited by individual understanding and interpretation accuracy. Consequently, the interpretation results often fell short of meeting the requirements for detailed reservoir development in gas fields.To address these challenges, a novel approach was implemented. Sensitivity parameters related to pre-stack lithology and reservoir properties were used as learning samples. Pre-stack inversion techniques were combined with machine deep learning algorithms to construct an interpretation model. This innovative method ultimately achieved quantitative predictions of sandstone thickness and reservoir properties. This method not only improves the resolution of reservoir prediction, but also greatly improves the prediction accuracy. The prediction results provide effective support for sedimentary microfacies research, reservoir formation analysis, and well location deployment, and have achieved good application results in the development of the second member gas reservoir of Xujiahe Formation in Xinchang. This article introduces a new interpretation approach for quantitative prediction of lithology and reservoirs, and serves as a valuable reference for gas field development in other regions.
Yugui QIAN . Application of machine deep learning technology in tight sandstones reservoir prediction: A case study of Xujiahe Formation in Xinchang, western Sichuan Depression[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(5) : 600 -607 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.007
[1] | 干磊, 何东博, 郭建林, 等. 机器学习方法在储层分类中的应用[J]. 数学的实践与认识, 2019, 49(13): 138-144. |
[1] | GAN Lei, HE Dongbo, GUO Jianlin, et al. Application of machine learning method in reservoir classification[J]. Mathematics in Practice and Theory, 2019, 49(13): 138-144. |
[2] | 徐晓祥, 李凡长, 张莉, 等. 范畴表示机器学习算法[J]. 计算机研究与发展, 2017, 54(11): 2567-2575. |
[2] | XU Xiaoxiang, LI Fanchang, ZHANG Li, et al. The category representation of machine learning algorithm[J]. Journal of Computer Research and Development, 2017, 54(11): 2567-2575. |
[3] | 程超, 李培彦, 陈雁, 等. 基于机器学习的储层测井评价研究进展[J]. 地球物理学进展, 2022, 37(1): 164-177. |
[3] | CHENG Chao, LI Peiyan, CHEN Yan, et al. Research progress of reservoir logging evaluation based on machine learning[J]. Progress in Geophysics, 2022, 37(1): 164-177. |
[4] | 仝卫国, 李敏霞, 张一可. 深度学习优化算法研究[J]. 计算机科学, 2018, 45(Z2): 155-159. |
[4] | TONG Weiguo, LI Minxia, ZHANG Yike. Research on optimization algorithm of deep learning[J]. Computer Science, 2018, 45(Z2): 155-159. |
[5] | 何玉春. 基于机器学习的储层渗透率预测方法[J]. 石化技术, 2022, 29(12): 182-184. |
[5] | HE Yuchun. Machine learning to predict reservoir permeability[J]. Petrochemical Industry Technology, 2022, 29(12): 182-184. |
[6] | 郑宇哲, 叶朝辉, 刘西恩, 等. 基于深度学习的储层物性参数预测方法研究[J]. 电子世界, 2018, 20(4): 23-26. |
[6] | ZHENG Yuzhe, YE Zhaohui, LIU Xi'en, et al. Research on prediction method of reservoir physical properties based on deep learning[J]. Electronics World, 2020, 20(4): 23-26. |
[7] | 丁燕, 杜启振, YASIN Qamar, 等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探, 2020, 59(2): 267-275. |
[7] | DING Yan, DU Qizhen, YASIN Qamar, et al. Fracture prediction based on deep learning: Application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 267-275. |
[8] | 史长林, 魏莉, 张剑, 等. 基于机器学习的储层预测方法[J]. 油气地质与采收率, 2022, 29(1): 90-97. |
[8] | SHI Changlin, WEI Li, ZHANG Jian, et al. Reservoir prediction method based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 90-97. |
[9] | 黄家宸, 张金川. 机器学习预测油气产量现状[J]. 油气藏评价与开发, 2021, 11(4): 613-620. |
[9] | HUANG Jiachen, ZHANG Jinchuan. Overview of oil and gas production forecasting by machine learning[J]. Reservoir Evaluation and Pevelopment, 2021, 11(4): 613-620. |
[10] | 侯晓琳. 深度学习在地质储层属性预测中的应用研究[J]. 计算机应用与软件, 2020, 37(4): 40-47. |
[10] | HOU Xiaolin. Application of deep learning in geological reservoir properties prediction[J]. Computer Applications and Software, 2020, 37(4): 40-47. |
[11] | 庾佳匕, 王鹏, 桂志先, 等. 自组织人工神经网络算法在储层预测中的应用[J]. 当代化工, 2019, 48(7): 1514-1518. |
[11] | YU Jiabi, WANG Peng, GUI Zhixian, et al. Application of self-organizing artificial neural network in reservoir prediction[J]. Contemporary Chemical Industry, 2019, 48(7): 1514-1518. |
[12] | 曹俊兴. 深度学习及其在深层天然气储层预测中的应用实验[J]. 物探化探计算技术, 2017, 39(6): 775-782. |
[12] | CAO Junxing. Deep learning and its application in deep gas reservoir prediction[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(6): 775-782. |
[13] | 罗刚, 肖立志, 史燕青, 等. 基于机器学习的致密储层流体识别方法研究[J]. 石油科学通报, 2022, 7(1): 24-33. |
[13] | LUO Gang, XIAO Lizhi, SHI Yanqing, et al. Machine learning for reservoir fluid identification with logs[J]. Petroleum Science Bulletin, 2022, 7(1): 24-33. |
[14] | 钱玉贵, 叶泰然, 张世华, 等. 叠前地质统计学反演技术在复杂储层量化预测中的应用[J]. 石油与天然气地质, 2013, 34(6): 834-840. |
[14] | QIAN Yugui, YE Tairan, ZHANG Shihua, et al. Application of pre-stack geo-statistics inversion technology in quantitative prediction of complex reservoirs[J]. Oil & Gas Geology, 2013, (6): 834-840. |
[15] | 杨威, 谢武仁, 俞凌杰, 等. 四川盆地上三叠统须家河组致密砂岩溶蚀实验及地质意义[J]. 石油实验地质, 2021, 43(4): 655-663. |
[15] | YANG Wei, XIE Wuren, YU Lingjie, et al. Dissolution experiments and geological implications of tight sandstones in the Xujiahe Formation of Upper Triassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 655-663. |
[16] | 陆红梅, 张仲培, 王琳霖, 等. 鄂尔多斯盆地南部上古生界致密碎屑岩储层预测——以镇泾地区为例[J]. 石油实验地质, 2021, 43(3): 443-451. |
[16] | LU Hongmei, ZHANG Zhongpei, WANG Linlin, et al. Prediction of tight clastic reservoirs of Upper Paleozoic in southern Ordos Basin: A case study of Zhenjing district[J]. Petroleum Geology & Experiment, 2021, 43(3): 443-451. |
[17] | 廉桂辉, 朱亚婷, 王晓光, 等. 叠前反演技术在玛湖油田储层预测中的应用[J]. 特种油气藏, 2022, 29(1): 80-84. |
[17] | LIAN Guihui, ZHU Yating, WANG Xiaoguang, et al. Application of pre-stack inversion technology to reservoir prediction of Mahu Oilfield[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 80-84. |
[18] | 符志国, 陈康, 廖娟, 等. 贝叶斯机器学习在储层预测中的应用研究[J]. 物探化探计算技术, 2020, 42(3): 345-351. |
[18] | FU Zhiguo, CHEN Kang, LIAO Juan, et al. The research of application of Bayesian machine learning in reservoir prediction[J]. Computing Techniques For Geophysical And Geochemical Exploration, 2020, 42(3): 345-351. |
[19] | 刘书会, 徐仁, 张昊. 基于贝叶斯估计的叠前反演技术在平湖油气田的应用[J]. 油气地质与采收率, 2010, 17(4): 30-32. |
[19] | LIU Shuhui, XU Ren, ZHANG Hao. The application of pre-stack inversion technique based on Bayesian estimation in Pinghu oilfield[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(4): 30-32. |
[20] | 袁成, 苏明军, 倪长宽. 基于稀疏贝叶斯学习的薄储层预测方法及应用[J]. 岩性油气藏, 2021, 33(1): 229-338. |
[20] | YUAN Cheng, SU Mingjun, NI Changkuan. A new method for thin reservoir identification based on sparse Bayesian learning and its application[J]. Lithologic Reservoirs, 2021, 33(1): 229-338. |
[21] | 马琦琦, 孙赞东, 杨柳鑫. 改进的贝叶斯迭代反演方法及其在白云岩致密储层识别的应用[J]. 物探与化探, 2019, 43(2): 234-243. |
[21] | MA Qiqi, SUN Zandong, YANG Liuxin. Modified Bayesian iterative inversion method and its application to dolomite tight oil reservoirs prediction[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 234-243. |
[22] | 朱剑兵, 王兴谋, 冯德永, 等. 基于双向循环神经网络的河流相储层预测方法及应用[J]. 石油物探, 2020, 59(2): 250-257. |
[22] | ZHU Jianbing, WANG Xingmou, FENG Deyong, et al. Predicting fluvial reservoirs using seismic data based on a Bi-recurrent neural network[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 250-257. |
[23] | 林年添, 付超, 张栋, 等. 无监督与监督学习下的含油气储层预测[J]. 石油物探, 2018, 57(4): 601-610. |
[23] | LIN Niantian, FU Chao, ZHANG Dong, et al. Supervised learning and unsupervised learning for hydrocarbon prediction using multiwave seismic data[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 601-610. |
/
〈 | 〉 |