Shale Gas

Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong

  • Jingchang LI ,
  • Ting LU ,
  • Haikuan NIE ,
  • Dongjun FENG ,
  • Wei DU ,
  • Chuanxiang SUN ,
  • Wangpeng LI
Expand
  • 1. Key Laboratory of Shale Oil/Gas Exploration and Production, SINOPEC, Beijing 100083, China
    2. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China

Received date: 2022-07-18

  Online published: 2023-11-01

Abstract

Due to the inadequacy in the pre-assessment of natural fracture growth in shale, the exploration and development effect of Weirong shale gas field is seriously affected. It is imperative to enhance research on fracture prediction. In this paper, we applied the post-stack seismic dip-azimuth attribute to detect fractures in the WY23 Pad, and evaluated the reliability of the detection results from four aspects: geology, seismic, logging and engineering. The method employed for fracture detection revealed that fractures exhibit layer-controlled characteristics. They can be divided into two sets of upper and lower fracture systems roughly bounded by the top surface of the ③ thin layer. These fracture systems dip toward each other in the profile, with a predominant strike direction of 310° and dip angles of less than 20°. This configuration is the result of NE-SW compression. The application of this method for fracture detection has a high degree of confidence and can be promoted and applied in other development pad than WY23.

Cite this article

Jingchang LI , Ting LU , Haikuan NIE , Dongjun FENG , Wei DU , Chuanxiang SUN , Wangpeng LI . Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(5) : 614 -626 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.05.009

References

[1] 杨天方, 薛晓军, 付联名. 地层压力监测方法改进及在钻井中的应用[J]. 钻采工艺, 2021, 44(2): 1-4.
[1] YANG Tianfang, XUE Xiaojun, FU Lianming. Improvement of formation pressure monitoring method and its application in drilling[J]. Drilling & Production Technology, 2021, 44(2): 1-4.
[2] 苏海琨, 聂海宽, 郭少斌, 等. 深层页岩含气量评价及其差异变化——以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824.
[2] SU Haikun, NIE Haikuan, GUO Shaobin, et al. Shale gas content evaluation for deep strata and its variation: A case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 815-824.
[3] 周桦, 魏力民, 王同, 等. 威荣深层页岩气储层精细评价方法及应用[J]. 油气藏评价与开发, 2021, 11(2):176-183.
[3] ZHOU Hua, WEI Limin, WANG Tong, et al. Evaluation method of Weirong deep shale gas reservoir and its application[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 176-183.
[4] 宋振响, 王保华, 魏祥峰, 等. “存滞系数”法在页岩气资源评价中的应用——以川东南上奥陶统五峰组—下志留统龙马溪组页岩气为例[J]. 石油实验地质, 2022, 44(3): 535-544.
[4] SONG Zhenxiang, WANG Baohua, WEI Xiangfeng, et al. Application of “retention coefficiency” method in shale gas resource evaluation: A case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(3): 535-544.
[5] 熊亮, 庞河清, 赵勇, 等. 威荣深层页岩气储层微观孔隙结构表征及分类评价[J]. 油气藏评价与开发, 2021, 11(2):154-163.
[5] XIONG Liang, PANG Heqing, ZHAO Yong, et al. Micro pore structure characterization and classification evaluation of reservoirs in Weirong deep shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 154-163.
[6] NELSON R A. Geologic analysis of naturally fractured reservoirs[M]. 2nd ed. Houston: Gulf Professional Publishing, 2001.
[7] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220.
[7] DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220.
[8] 李俊键, 赵树成, 糜利栋, 等. 裂缝宽度对页岩气开发的影响研究[J]. 断块油气田, 2016, 23(1): 95-99.
[8] LI Junjian, ZHAO Shucheng, MI Lidong, et al. Fracture width effect on shale gas development based on DFM[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 95-99.
[9] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532.
[9] LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532.
[10] HILL D G, LOMBARDI T E, MARTIN J P. Fractured shale gas potential in New York[J]. Northeastern Geology & Environment Science, 2004, 26(1/2): 57-58.
[11] SAYERS C M. The effect of anisotropy on the Young's moduli and Poisson's ratios of shales[J]. Geophysical Prospecting, 2013, 61(2): 416-426.
[12] SAYERS C M. Stress-dependent seismic anisotropy of shales[J]. Geophysics, 1999, 64(1): 93-98.
[13] 杨林, 刘彧轩, 向斌, 等. 金华—秋林致密气藏直井层内分簇压裂裂缝扩展规律及应用[J]. 钻采工艺, 2021, 44(2): 49-51.
[13] YANG Lin, LIU Yuxuan, XIANG Bin, et al. Fracture propagation of intra-zone cluster fracturing and its application in Jinhua-Qiulin tight gas reservoirs[J]. Drilling & Production Technology, 2021, 44(2): 49-51.
[14] 闫国峰, 姜琪, 乔国满, 等. 致密油储层压裂后渗透率预测模型[J]. 钻采工艺, 2021, 44(1): 69-73.
[14] YAN Guofeng, JIANG Qi, QIAO Guoman, et al. Permeability prediction model of tight oil reservoir after fracturing[J]. Drilling & Production Technology, 2021, 44(1): 69-73.
[15] 桂志先, 段天友, 易远元, 等. 裂缝性储层纵波地震检测方法研究[J]. 石油天然气学报, 2007, 29(4): 75-79.
[15] GUI Zhixian, DUAN Tianyou, YI Yuanyuan, et al. On P-wave seismic detection methods for fractured reservoirs[J]. Journal of Oil and Gas Technology, 2007, 29(4): 75-79.
[16] 杨晓, 王真理, 喻岳钰. 裂缝型储层地震检测方法综述[J]. 地球物理学进展, 2010, 25(5): 1785-1794.
[16] YANG Xiao, WANG Zhenli, YU Yueyu. The overview of seismic techniques in prediction of fracture reservoir[J]. Progress in Geophysics, 2010, 25(5): 1785-1794.
[17] 刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814.
[17] LIU Weixin, LU Longfei, YE Deliao, et al. Significance and formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814.
[18] 张冲, 夏富国, 夏玉琴, 等. 基于层次分析法的致密砂岩储层可压性综合评价[J]. 钻采工艺, 2021, 44(1): 61-64.
[18] ZHANG Chong, XIA Fuguo, XIA Yuqing, et al. Comprehensive evaluation of fracability of tight sandstone reservoirs based[J]. Drilling & Production Technology, 2021, 44(1): 61-64.
[19] 王飞, 程礼军, 刘俊峰, 等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探, 2015, 43(5): 113-116.
[19] WANG Fei, CHENG Lijun, LIU Junfeng, et al. Research and application of post-stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration, 2015, 43(5):113-116.
[20] 石学文, 佟彦明, 刘文平, 等. 页岩储层地震尺度断裂系统分析及其石油地质意义——以四川盆地长宁地区宁201井区为例[J]. 海相油气地质, 2019, 24(4): 87-96.
[20] SHI Xuewen, TONG Yanming, LIU Wenping, et al. Analysis of seismic-scale fracture system of shale reservoir and its petroleum significance: A case study of well Ning 201 area of Changning Block, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4): 87-96.
[21] 孙小琴. 南川地区构造样式及页岩气勘探潜力[J]. 地质学刊, 2020, 44(1-2): 102-107.
[21] SUN Xiaoqi. Analysis of tectonic style and shale gas exploration potential in Nanchuan area[J]. Journal of Geology, 2020, 44(1-2): 102-107.
[22] 欧阳明华, 史建南, 胡天文, 等. 四川盆地威远地区页岩气储层多尺度裂缝预测[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 75-84.
[22] OUYANG Minghua, SHI Jiannan, HU Tianwen, et al. 3D frequency-division fracture prediction in shale gas reservoir in Weiyuan area, Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(1): 75-84.
[23] DALLEY R M, GEVERS E C A, STAMPFLI G M, et al. Dip and azimuth displays for 3D seismic interpretation[J]. First Break, 1989, 7(3): 86-95.
[24] 张驰. 焦石坝龙马溪页岩上部气层压裂工艺优化与现场试验[J]. 钻采工艺, 2021, 44(1): 133-137.
[24] ZHANG Chi. Optimization and field trail of the fracturing process of Jiaoshiba upper shale gas layers[J]. Drilling & Production Technology, 2021, 44(1): 133-137.
[25] 陈鹏程, 向伟铭, 张全. 基于CUDA的地震倾角方位角并行算法[J]. 计算机应用, 2019, 39(S2): 175-178.
[25] CHEN Pengcheng, XIANG Weiming, ZHANG Quan. Seismic dip and azimuth parallel algorithm based on CUDA[J]. Journal of Computer Applications, 2019, 39(Suppl. 2): 175-178.
[26] BARNES A E. Theory of 2-D complex seismic trace analysis[J]. Geophysics, 1996, 61(1): 264-272.
[27] MARFURT K. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006, 71(4): 29-40.
[28] H?CKER C, FEHMERS G. Fast structural interpretation with structure-oriented filtering[J]. The Leading Edge, 2002, 21(3):225-320.
[29] 邓宾, 刘树根, 覃作鹏, 等. 扬子板内大娄山渐变型盆-山结构带多期构造特征及其对板内-板缘构造的响应[J]. 大地构造与成矿学, 2015, 39(6): 973-991.
[29] DENG Bin, LIU Shugen, QIN Zuopeng, et al. Mutli-stage structural evolution of intracontinental Daloushan basin-mountain system, upper Yangtze Block: Implications for a coupling of deformation events across south China plate and its periphery[J]. Geotectonica et Metallogenia, 2015, 39(6): 973-991.
[30] 万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011.
[30] WAN Tianfeng. Tectonics in China[M]. Beijing: Geological Publishing House, 2011.
[31] 郭元岭, 刘翠荣, 李红梅, 等. 渤海湾盆地济阳坳陷油藏地震描述有效性技术研究[J]. 石油实验地质, 2021, 43(1): 121-127.
[31] GUO Yuanling, LIU Cuirong, LI Hongmei, et al. Effective techniques for seismic description of reservoirs in Jiyang Depression,Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 121-127.
[32] 付蕾, 张本健, 曹正林, 等. 四川盆地川中地区侏罗系沙溪庙组不同类型砂体地质特征及地震精细雕刻[J]. 石油实验地质, 2022, 44(1): 85-93.
[32] FU Lei, ZHANG Benjian, CAO Zhenglin, et al. Geological characteristics and seismic fine description of different types of sand bodies in Jurassic Shaximiao Formation in central Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 85-93.
Outlines

/