Petroleum Reservoir Evaluation and Development >
2023 , Vol. 13 >Issue 6: 703 - 712
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.06.001
Effect of rock-soil stratification on the heat transfer performance of U-shaped butted well in medium-deep layers
Received date: 2023-04-10
Online published: 2024-01-03
The medium-deep geothermal exchanger featuring a U-shaped pipe configuration presents an optimal solution for geothermal energy heat exchange due to its capability to deliver higher temperature water, achieve greater heat extraction rates, and maintain minimal flow resistance. A layered analytical model for such exchanger is established based on the theory of thermal resistance in series methods. Experimental results are employed to validate the accuracy of this layered analytical model. By focusing on the Guanzhong Basin in Shaanxi Province as the focal point of research, the model investigates the influence of subterranean stratification in thermal conductivity and volumetric specific heat on the outlet water temperature and heat extraction rate throughout an entire heating period for a 3 000 m deep geothermal exchanger with U-shaped pipe. The findings reveal that the underground thermal conductivity stratification has a significant impact on the heat transfer performance. A simplistic approach using average thermal conductivity, as opposed to a detailed accounting of layered conductivities, results in an overestimation of outlet water temperature and heat extraction rate by approximately 6 % to 15 %. However, specific heat stratification exerts minimal influence on the subterranean heat transfer dynamics. This underscores the importance of considering the effects of underground thermal property stratification in the design and analysis of the heat transfer performance of a medium-deep geothermal exchanger with U-shaped pipe. For precise modeling and results, it is recommended to segment the underground area into at least eight distinct layers.
Xiaorong GAO , Hongyan LI , Xiaoqing REN , Caixia SUN , Xingchen LU , Lin LIU , Qiangqiang LYU , Yong XU , Wenbin DONG , Zemu WANG , Rongkang WANG , Ruican MIAO . Effect of rock-soil stratification on the heat transfer performance of U-shaped butted well in medium-deep layers[J]. Petroleum Reservoir Evaluation and Development, 2023 , 13(6) : 703 -712 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.06.001
[1] | 江亿, 胡珊, 张洋, 等. 中国建筑节能年度发展研究报告[R]. 北京: 清华大学建筑节能研究中心, 2022. |
[1] | JIANG Yi, HU Shan, ZHANG Yang, et al. Annual development research report on building energy efficiency in China[R]. Beijing: Research Center for Building Energy Efficiency of Tsinghua University, 2022. |
[2] | 庞忠和, 汪集暘. 地热能迎空前发展机遇[N]. 中国科学报, 2021-01-06(3). |
[2] | PANG Zhonghe, WANG Jiyang. Geothermal energy welcomes unprecedented development opportunities[N]. China Science Daily, January 6, 2021(3). |
[3] | 宋先知, 李根生, 王高升, 等. 中深层地热能取热技术研究进展[J]. 科技导报, 2022, 40(20): 42-51. |
[3] | SONG Xianzhi, LI Gensheng, WANG Gaosheng, et al. Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science&Technology Review, 2022, 40(20): 42-51. |
[4] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. |
[4] | WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science&Technology Review, 2012, 30(32): 25-31. |
[5] | 李嘉舒, 戴传山, 雷海燕, 等. 我国中深层地热开发技术专利综述与分析[J]. 能源研究与信息, 2022, 38(4): 195-202. |
[5] | LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Patents review and analysis of mid-deep geothermal energy exploitation technology in China[J]. Energy Research and Information, 2022, 38(4): 195-202. |
[6] | 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[6] | DUO Ji. The basic characteristics of the Yangbajing Geothermal Field: A typical high temperature geothermal system[J]. Engineering Science, 2003, 5(1): 42-47. |
[7] | 赵旭, 杨艳, 刘雨虹, 等. 全球地热产业现状与技术发展趋势[J]. 世界石油工业, 2020, 27(1): 53-57. |
[7] | ZHAO Xu, YANG Yan, LIU Yuhong, et al. Development trend and outlook of geothermal industry in the world[J]. World Petroleum Industry, 2020, 27(1): 53-57. |
[8] | 曹锐, 多吉, 李玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望[J]. 工程科学学报, 2022, 44(10): 1623-1631. |
[8] | CAO Rui, DUO Ji, LI Yubin, et al. Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China[J]. Chinese Journal of Engineering, 2022, 44(10): 1623-1631. |
[9] | 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22. |
[9] | WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1): 14-22. |
[10] | 冉运敏, 卜宪标. 单井地热采暖系统岩石温度特性模拟研究[J]. 新能源进展, 2019, 7(2): 161-167. |
[10] | RAN Yunmin, BU Xianbiao. Simulation study on rock temperature characteristics of single well geothermal heating system[J]. Advances in New and Renewable Energy, 2019, 7(2): 161-167. |
[11] | 李超. 中深层地热能建筑供暖地埋管换热特性及运行参数优化[D]. 西安: 长安大学, 2022. |
[11] | LI Chao. Heat transfer characteristics and operating parameters optimization of buried pipes for building heating using geothermal energy in middle-deep layers[D]. Xi’an: Chang'an University, 2022. |
[12] | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
[12] | LI Tingliang, CEN Jiwen, HUANG Wenbo, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. |
[13] | 陈静平. 深层U型地热换热器换热过程模拟计算研究[D]. 西安: 西安建筑科技大学, 2012. |
[13] | CHEN Jingping. Simulation research on thermal process of deep U-pipe geothermal heat exchanger[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. |
[14] | 李超, 官燕玲, 高海仁, 等. 纳米流体对U型深埋管换热特性影响的研究[J]. 太阳能学报, 2021, 42(1): 392-399. |
[14] | LI Chao, GUAN Yanling, GAO Hairen, et al. Study on influence of nanofluids on heat transfer characteristics of deep-buried U-bend pipes[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 392-399. |
[15] | 李超, 官燕玲, 杨瑞涛, 等. U型深埋管固井层对埋管换热性能影响的研究[J]. 太阳能学报, 2021, 42(2): 267-273. |
[15] | LI Chao, GUAN Yanling, YANG Ruitao, et al. Study on influence of cementing layer on heat transfer performance of U-bend deep-buried pipe[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 267-273. |
[16] | 李超, 江超, 杨瑞涛, 等. 埋深及连接管长度对U型深埋管换热的影响[J]. 太阳能学报, 2021, 42(7): 490-496. |
[16] | LI Chao, JIANG Chao, YANG Ruitao, et al. Effect of buried depth and connecting pipe length on deep-buried u-bend pipe heat transfer[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 490-496. |
[17] | 王兴, 李超, 官燕玲, 等. 竖向U型深埋管建筑供暖连续及间歇运行的现场实验[J]. 区域供热, 2018, 194(3): 8-12. |
[17] | WANG Xing, LI Chao, GUAN Yanling, et al. In-situ experiment of continuous and intermittent operation of vertical U-bend deep-buried pipe to supply heat in buildings[J]. District Heating, 2018, 194(3): 8-12. |
[18] | 王伟. 深层U型地热井仿真模拟及取热性能研究[J]. 太阳能学报, 2022, 43(7): 477-484. |
[18] | WANG Wei. Study on simulation and heat removal performance of deep U-shaped geothermal geothermal well[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 477-484. |
[19] | 鲍玲玲, 王雪, 刘俊, 等. 基于岩土纵向分层的中深层U型地埋管换热器取热性能研究[J]. 地球物理学进展, 2022, 37(4): 1371-1378. |
[19] | BAO Lingling, WANG Xue, LIU Jun, et al. Research on heat extraction performance of U-shaped underground heat exchanger based on longitudinal layering of rock and soil[J]. Progress in Geophysics, 2022, 37(4): 1371-1378. |
[20] | 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2006. |
[20] | YANG Shiming, TAO Wenquan. Heat Transfer(Fourth Edition)[M]. Beijing: Higher Education Press, 2006. |
[21] | LI C, JIANG C, GUAN Y L. An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles[J]. Energy, 2022, 244: 122682. |
[22] | 陕西省住房和城乡建设厅. 中深层地热地埋管供热系统应用技术规程: DBJ 61/T166—2020[S]. 北京: 中国建材工业出版社, 2020: 1. |
[22] | Department of housing and urban rural development of Shaanxi province. Technical regulation for medium deep geothermal buried pipe heating system: DBJ 61/T166-2020[S]. Beijing: China Building Materials Industry Press, 2020: 1. |
/
〈 | 〉 |