Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 1: 35 - 41
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.01.005
Optimal prediction method for CO2 solubility in saline aquifers
Received date: 2023-04-03
Online published: 2024-03-05
CO2 solubility in saline aquifer is an important parameter for estimating the volume of CO2 that can be dissolved and stored underground. To rapidly and economically evaluate and analyze the solubility of CO2 in saline aquifers, a study was conducted using grey GM(1,1) modeling based on existing data of CO2 solubility in water under various temperatures, pressures, and salinities. By using Markov theory, the state interval was divided, the state transition probability matrix was constructed, and the prediction results were revised. A prediction model of CO2 solubility in saline aquifer based on grey Markov theory was proposed. The results showed that the average relative errors between the predicted values of the grey Markov theory and the measured values were 1.52%、17.73%、0.21% and 3.97%, respectively. The average relative errors between the prediction results of the gray GM(1,1) model were 2.37%、19.29%、3.62% and 3.94%, respectively. The predicted values of the grey Markov model were more consistent with the measured data, and the prediction performance of the model was better, so as to provide a new method for predicting the solubility of CO2 in underground salt water.
Lifei DONG , Wenzhuo DONG , Qi ZHANG , Pinzhi ZHONG , Miao WANG , Bo YU , Haiyu WEI , Chao YANG . Optimal prediction method for CO2 solubility in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(1) : 35 -41 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.005
[1] | 盛斌, 赵文涛. 全球价值链嵌入与中国经济增长的"结构路径之谜"[J]. 经济科学, 2021(4): 20-36. |
[1] | SHENG Bin, ZHAO Wentao. Global value chain embeddedness and the “structural path puzzle” of China's economic growth[J]. Economic Science, 2021(4): 20-36. |
[2] | 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7. |
[2] | WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage (CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7. |
[3] | VARGAS D P, BALSMAO M, GIRALDO L, et al. Equilibrium and dynamic CO2 adsorption on activated carbon honeycomb monoliths[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 7898-7905. |
[4] | 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022, 12(5): 711-725. |
[4] | SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725. |
[5] | 周银邦, 王锐, 赵淑霞, 等. CO2封存过程中“适应性”地质建模方法及案例[J]. 非常规油气, 2022, 9(6): 1-8. |
[5] | ZHOU Yinbang, WANG Rui, ZHAO Shuxia, et al. “Fit to purpose” geological modeling methods and cases in the process of CO2 storage[J]. Unconventional Oil & Gas, 2022, 9(6): 1-8. |
[6] | 王锐, 李阳, 吕成远, 等. 鄂尔多斯盆地深部咸水层CO2驱水与埋存潜力评价方法研究[J]. 非常规油气, 2021, 8(5): 50-55. |
[6] | WANG Rui, LI Yang, LYU Chengyuan, et al. Study on potential evaluation method on CO2 EWR and storage for deep saline layers in Ordos Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 50-55. |
[7] | CHEN W Y, GAO P F, HE J K. Impacts of future carbon emission reductions on the Chinese GDP growth[J]. Journal of Tsinghua University, 2004, 44(6): 744-747. |
[8] | 张宗檩, 吕广忠, 王杰. 胜利油田CCUS技术及应用[J]. 油气藏评价与开发, 2021, 11(6): 812-822. |
[8] | ZHANG Zonglin, LYU Guangzhong, WANG Jie. CCUS and its application in Shengli Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 812-822. |
[9] | 杨术刚, 蔡明玉, 张坤峰, 等. CO2-水-岩相互作用对CO2地质封存体物性影响研究进展及展望[J]. 油气地质与采收率, 2023, 30(6): 80-91. |
[9] | YANG Shugang, CAI Mingyu, ZHANG Kunfeng, et al. Research progress and prospect of CO2-water-rock interaction on petrophysical properties of CO2 geological sequestration[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 80-91. |
[10] | 李宗阳, 张庆福, 张团, 等. 盐水层CO2溶解埋存潜力确定方法[J]. 油气地质与采收率, 2023, 30(2): 174-180. |
[10] | LI Zongyang, ZHANG Qingfu, ZHANG Tuan, et al. Method for determining potential of dissolved CO2 storage in brine layers[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 174-180. |
[11] | 唐良睿, 贾英, 严谨, 等. 枯竭气藏CO2埋存潜力计算方法研究[J]. 油气藏评价与开发, 2021, 11(6): 858-863. |
[11] | TANG Liangrui, JIA Ying, YAN Jin, et al. Study on calculation method of CO2 storage potential in depleted gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863. |
[12] | DUAN Z H, SUN R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 2 773 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271. |
[13] | 史训立. CO2和石英等矿物在常见水盐体系中的溶解度模型研究[D]. 北京: 中国地质大学(北京), 2019. |
[13] | SHI Xunli. Thermodynamic modeling on the solubility of CO2, quartz and other minerals in common water-salt systems[D]. Beijing: China University of Geosciences, 2019. |
[14] | MAO S D, HU J W, ZHANG Y S, ZHANG Y, et al. A predictive model for the PVTx properties of CO2-H2O-NaCl fluid mixture up to high temperature and high pressure[J]. Applied Geochemistry, 2015, 54: 54-64. |
[15] | 卞小强, 熊伟, 蔺嘉昊, 等. 基于G-E混合规则的统计缔合流体方程预测CO2在水中的溶解度[J]. 石油化工, 2019, 48(10): 1035-1039. |
[15] | BIAN Xiaoqiang, XIONG Wei, LIN Jiahao, et al. Prediction of the solubility of carbon dioxide in water using statistical associating fluid equation of state based on the GE mixing rule[J]. Petrochemical Technology, 2019, 48(10): 1035-1039. |
[16] | TANG Y, BIAN X Q, DU Z M, et al. Measurement and prediction model of carbon dioxide solubility in aqueous solutions containing bicarbonate anion[J]. Fluid Phase Equilibria, 2015, 386: 56-64. |
[17] | DU X Y, WU J H, ZHU Q M, et al. Establishment and application of gray residual Markov prediction model for Hazardous chemicals accidents[J]. Safety and Environmental Engineering, 2018(3): 125-129. |
[18] | XING D S, SHEN J Y. A new Markov model for web access prediction[J]. Computing in Science & Engineering, 2002, 4(6): 34-39. |
[19] | 娄彦江, 马艳丽, 韩丽飞. 基于马尔科夫链的区域综合交通客运结构预测[J]. 交通运输系统工程与信息, 2012, 12(3): 1-5 |
[19] | LOU Yanjiang, MA Yanli, HAN Lifei. Regional integrated passenger transport structure prediction based on Markov chain[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(3): 1-5. |
[20] | 靳春玲, 王运鑫. 基于灰色马尔科夫模型的突发水污染事故预测[J]. 兰州交通大学学报, 2018, 37(2): 110-115. |
[20] | JIN Chunling, WANG Yunxin. The prediction of sudden water pollution accident based on gray Markov model[J]. Journal of Lanzhou Jiaotong University, 2018, 37(2): 110-115. |
[21] | SHEN F S. Prediction of farmland irrigation water demand by grey GM(1, 1) model[J]. Water Resources Protection, 2007, 23(3): 33-35. |
[22] | UMURZAKOV U P. Prediction of prices for agricultural products through Markov chain model[J]. International Journal of Psychosocial Rehabilitation, 2020, 24(3): 293-303. |
[23] | 王伟民, 汪沄, 张国安. 基于灰色马尔科夫模型的全国卷烟需求预测研究[J]. 中国烟草学报, 2009, 15(6): 66-69. |
[23] | WANG Weimin, WANG Yun, ZHANG Guoan. Grey Markov predicting in the analysis of cigarette demand in China[J]. Acta Tabacaria Sinica, 2009, 15(6): 66-69. |
[24] | 陈飞宇, 董利飞, 王苗, 等. 基于灰色马尔科夫模型的地基承载力预测[J]. 地质科技通报, 2022, 41(3): 222-227. |
[24] | CHEN Feiyu, DONG Lifei, WANG Miao, et al. Prediction of foundation bearing capacity based on grey Markov mode[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 222-227. |
[25] | 赵振武, 麻建军. 基于灰色马尔科夫模型的机场安检危险品数量预测[J]. 安全与环境学报, 2017, 17(1): 51-53. |
[25] | ZHAO Zhenwu, MA Jianjun. Prediction of the amount of dangerous goods to be inspected by the airport security department via the grey Markov model[J]. Journal of Safety and Environment, 2017, 17(1): 51-53. |
[26] | WANG X, PAN L, WU K Q, et al. Experiment based modeling of CO2 solubility in H2O at 313.15-473.15 K and 0.5-200 MPa[J]. Applied Geochemistry, 2021: 105005. |
[27] | WANG J L, HE B B, XIE L F, et al. Determination of CO2 solubility in water and NaCl solutions under geological sequestration conditions using a fused silica capillary cell with in situ Raman spectroscopy[J]. Journal of Chemical & Engineering Data, 2019, 64(6): 2484-2496. |
/
〈 | 〉 |